精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=x2-ax+b.
(1)若不等式f(x)<0的解集是{x|2<x<3},求不等式bx2-ax+1>0的解集;
(2)当b=3-a时,对任意的x∈(-1,0]都有f(x)≥0成立,求实数a的取值范围.

分析 (1)根据二次函数的性质求出a,b的值,解不等式求出其解集即可;
(2)问题转化为a≤${(\frac{{x}^{2}+3}{x+1})}_{min}$,设t=x+1,则t∈(0,1],从而求出a的范围即可.

解答 解:(1)∵不等式x2-ax+b<0的解集是{x|2<x<3},
∴x=2,x=3是方程x2-ax+b=0的解,
由韦达定理得:a=5,b=6,
故不等式bx2-ax+1>0为6x2-5x+1>0,
解不等式6x2-5x+1>0,
得其解集为{x|x<$\frac{1}{3}$或x>$\frac{1}{2}$}.
(2)据题意x∈(-1,0],f(x)=x2-ax+3-a≥0恒成立,
则可转化为a≤${(\frac{{x}^{2}+3}{x+1})}_{min}$,
设t=x+1,则t∈(0,1],
$\frac{{x}^{2}+3}{x+1}$=$\frac{{(t-1)}^{2}+3}{t}$=t+$\frac{4}{t}$-2关于t递减,
所以${(t+\frac{4}{t}-2)}_{min}$=1+4-2=3,
∴a≤3.

点评 本题考查了二次函数的性质,考查函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{2^x}{{{2^x}+\sqrt{2}}}$.
(1)求f(x)+f(1-x)的值;
(2)若数列{an}满足an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1)(n∈N*),求数列{an}的通项公式;
(3)若数列{bn}满足bn=2nan,Sn是数列{bn}的前n项和,是否存在正实数k,使不等式knSn>3bn对于一切的n∈N*恒成立?若存在,请求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在等比数列{an}中,前n项和Sn=2n+a(n∈N*),则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若y=|3sin(ωx+$\frac{π}{12}$)+2|的图象向右平移$\frac{π}{6}$个单位后与自身重合,且y=tanωx的一个对称中心为($\frac{π}{48}$,0),则ω的最小正值为24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=sin$\frac{πx+π}{3}$-$\sqrt{3}$cos$\frac{πx+π}{3}$,f(1)+f(2)+…+f(2014)=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=x2+2cosx,若f(x1)>f(x2),则下列不等式一定成立的是(  )
A.x1>x2B.|x1|<|x2|C.x1>|x2|D.x12>x22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题中,是假命题的是(  )
A.?x0∈R,sinx0+cosx0=$\sqrt{3}$B.?x0∈R,tanx0=2016
C.?x>0,x>lnxD.?x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和是Sn,且满足2Sn=3an-$\frac{1}{2}$(n∈N*).
(1)求a1,a2,a3,a4,并猜想通项公式an(不用证明);
(2)设bn=1+2log3(2an),求证:$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一份共3道题的测试卷,全班得3分、2分、1分和0分的学生所占比例分别为30%、50%、10%和10%,若班级共有50名学生,则班级平均分为2.

查看答案和解析>>

同步练习册答案