分析 (1)根据二次函数的性质求出a,b的值,解不等式求出其解集即可;
(2)问题转化为a≤${(\frac{{x}^{2}+3}{x+1})}_{min}$,设t=x+1,则t∈(0,1],从而求出a的范围即可.
解答 解:(1)∵不等式x2-ax+b<0的解集是{x|2<x<3},
∴x=2,x=3是方程x2-ax+b=0的解,
由韦达定理得:a=5,b=6,
故不等式bx2-ax+1>0为6x2-5x+1>0,
解不等式6x2-5x+1>0,
得其解集为{x|x<$\frac{1}{3}$或x>$\frac{1}{2}$}.
(2)据题意x∈(-1,0],f(x)=x2-ax+3-a≥0恒成立,
则可转化为a≤${(\frac{{x}^{2}+3}{x+1})}_{min}$,
设t=x+1,则t∈(0,1],
$\frac{{x}^{2}+3}{x+1}$=$\frac{{(t-1)}^{2}+3}{t}$=t+$\frac{4}{t}$-2关于t递减,
所以${(t+\frac{4}{t}-2)}_{min}$=1+4-2=3,
∴a≤3.
点评 本题考查了二次函数的性质,考查函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x1>x2 | B. | |x1|<|x2| | C. | x1>|x2| | D. | x12>x22 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,sinx0+cosx0=$\sqrt{3}$ | B. | ?x0∈R,tanx0=2016 | ||
| C. | ?x>0,x>lnx | D. | ?x∈R,2x>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com