分析 (1)由已知数列递推式分别取n=1、2、3、4求得a1,a2,a3,a4,并利用不完全归纳法归纳猜想通项公式;
(2)把(1)中求得的数列通项公式代入bn=1+2log3(2an),然后利用裂项相消法求和证明$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$<$\frac{1}{2}$.
解答 (1)解:n=1时,$2{a}_{1}=3{a}_{1}-\frac{1}{2}$,得${a}_{1}=\frac{1}{2}$;
n=2时,$2({a}_{1}+{a}_{2})=3{a}_{2}-\frac{1}{2}$,得${a}_{2}=\frac{3}{2}$;
n=3时,$2({a}_{1}+{a}_{2}+{a}_{3})=3{a}_{3}-\frac{1}{2}$,得${a}_{3}=\frac{9}{2}$;
n=4时,$2({a}_{1}+{a}_{2}+{a}_{3}+{a}_{4})=3{a}_{4}-\frac{1}{2}$,得${a}_{4}=\frac{27}{2}$.
猜想:${a}_{n}=\frac{{3}^{n-1}}{2}$(n∈N*);
(2)证明:把${a}_{n}=\frac{{3}^{n-1}}{2}$代入bn=1+2log3(2an),
得bn=1+2log32an=2n-1,
∴$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{1×3}+\frac{1}{3×5}+…+\frac{1}{(2n-1)(2n+1)}$
=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$=$\frac{1}{2}(1-\frac{1}{2n+1})$<$\frac{1}{2}$.
点评 本题考查数列递推式,考查了裂项相消法求数列的前n项和,训练了放缩法证明数列不等式,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 10 | C. | 11 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ω=$\frac{π}{4}$,φ=$\frac{3π}{4}$ | B. | ω=$\frac{π}{4}$,φ=$\frac{π}{4}$ | C. | ω=$\frac{π}{2}$,φ=$\frac{π}{4}$ | D. | ω=$\frac{π}{3}$,φ=$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com