精英家教网 > 高中数学 > 题目详情
9.已知a:b:c=1:$\sqrt{2}$:$\sqrt{3}$,试判断三角形的形状.

分析 根据题意,设a=t,b=$\sqrt{2}$t,c=$\sqrt{3}$t,分析可得c为最大边,C为最大角,用余弦定理可求得cosC=0,进而可得C=90°,即可得三角形为直角三角形的结论.

解答 解:根据题意,a:b:c=1:$\sqrt{2}$:$\sqrt{3}$,设a=t,b=$\sqrt{2}$t,c=$\sqrt{3}$t,
则c为最大边,C为最大角,
cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=0,C=90°;
故三角形为直角三角形.

点评 本题考查余弦定理的运用,注意先分析出最大边、最大角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.定义在R上的函数f(x)满足f(x+2)=$\frac{1}{2}$f(x),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2{x}^{2},0≤x<1}\\{-{2}^{1-|x-\frac{3}{2}|},1≤x<2}\end{array}\right.$,函数g(x)=(2x-x2)ex+m,若?x1∈[-4,-2),?x2∈[-1,2],使得不等式f(x1)-g(x2)≥0成立,则实数m的取值范围是(  )
A.(-∞,-8]B.(-∞,$\frac{3}{e}$+8]C.[$\frac{3}{e}$-8,+∞)D.(-∞,$\frac{3}{e}$-8]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:对于非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{a}$∥$\overrightarrow{b}$是使得|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|成立的一个充分不必要条件;命题q:若$\overrightarrow{a}$,$\overrightarrow{b}$是单位向量,则$\overrightarrow{a}•\overrightarrow{b}$=1是$\overrightarrow{a}$=$\overrightarrow{b}$的充要条件,则下列说法正确的是(  )
A.p∨q为假B.p∧q为真C.¬p∧q为假D.¬p∨q为真

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=3sin(2x+$\frac{π}{3}$)+1.
(1)求f(x)的最小正周期T;
(2)当x为何值时,f(x)取得最大值和最小值;
(3)求f(x)的对称轴及对称点;
(4)求f(x)的单调区间:
(5)求f(x)在[0,$\frac{π}{2}$]上的单调区间;
(6)当x∈[0,$\frac{π}{2}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.log224+eln2-log49=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\sqrt{1-1nx}$的定义域是(  )
A.(-∞,e)B.(-∞,e]C.(0,e)D.(0,e]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.正四面体的四个顶点都在以原点O(0,0,0)为球心,半径为1的球面上,已知该正四面体的一个顶点P的坐标为(0,0,1),另一个顶点Q的坐标为(m,n,p),则下列选项正确的是(  )
A.$\overrightarrow{OP}$与$\overrightarrow{OQ}$的夹角为120°B.m2+n2=p2
C.mn<0D.p<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知sinθ+cosθ=$\frac{1}{5}$,θ∈($\frac{π}{2}$,$\frac{3π}{4}$),求sinθ•cosθ,sin2θ,cos2θ,sinθ,cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式lg(2x-1)-lg3<0的解集为($\frac{1}{2}$,2).

查看答案和解析>>

同步练习册答案