已知以点C(1,﹣2)为圆心的圆与直线x+y﹣1=0相切.
(1)求圆C的标准方程;
(2)求过圆内一点P(2,﹣)的最短弦所在直线的方程.
(1);(2).
解析试题分析:
解题思路:(1)因为圆与直线x+y﹣1=0相切,所以利用点到直线的距离公式求出圆心到直线的距离即为圆的半径,写出圆的标准方程即可;(2)先判定过P点的最短弦所在直线与过P点的直径垂直,再进行求解.
规律总结:直线圆的位置关系,主要涉及直线与圆相切、相交、相离,在解决直线圆的位置关系时,要注意结合初中平面几何中的直线与圆的知识.
试题解析:(1)圆的半径r==,所以圆的方程为(x﹣1)2+(y+2)2=2.
圆的圆心坐标为C(1,﹣2),则过P点的直径所在直线的斜率为﹣,
由于过P点的最短弦所在直线与过P点的直径垂直,
∴过P点的最短弦所在直线的斜率为2,
∴过P点的最短弦所在直线的方程y+=2(x﹣2),即4x﹣2y﹣13=0.
考点:1.圆的标准方程;2.直线与圆的位置关系.
科目:高中数学 来源: 题型:解答题
将一颗质地均匀的正方体骰子(六个面的点数分别为1、2、3、4、5、6)先后抛两次,将得到的点数分别记为a,b.
(1)求满足条件a+b≥9的概率;
(2)求直线ax+by+5=0与x2+y2=1相切的概率
(3)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线,圆.
(1)求直线被圆所截得的弦长;
(2)如果过点的直线与直线垂直,与圆心在直线上的圆相切,圆被直线分成两段圆弧,且弧长之比为,求圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线l:2x+y+2=0及圆C:x2+y2=2y.
(1)求垂直于直线l且与圆C相切的直线l′的方程;
(2)过直线l上的动点P作圆C的一条切线,设切点为T,求|PT|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形为边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的圆O交于F,连接CF并延长交AB于点E.
(1).求证:E为AB的中点;
(2).求线段FB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com