精英家教网 > 高中数学 > 题目详情

如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交于BC于点E,AB=2AC.

(Ⅰ)求证:BE=2AD;
(Ⅱ)当AC=1,EC=2时,求AD的长.

(Ⅰ)详见解析;(Ⅱ).

解析试题分析:(Ⅰ)要证明,注意到的平分线,等角对等弦,可连接,则,可证,又因为,可证即可,由圆内接四边形的性质可证;(Ⅱ)根据割线定理,建立的方程,解出即可.
试题解析:(Ⅰ)连接,因为是圆的内接四边形,所以,又,所以,即有,又,所以,又的平分线,
所以,从而.

(Ⅱ)由条件的,根据割线定理得,即,所以
解得,或(舍去),即
考点:本小题考查割线定理,相似三角形,等角对等弦,圆内接四边形,考查分析问题、解决问题的能力,及推理论证能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,D为△ABC中BC边上的一点,∠CAD=∠B,若AD=6,AB=10,BD=8,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=ACAE=AB,BD,CE相交于点F.

(Ⅰ)求证:A,E,F, D四点共圆;
(Ⅱ)若正△ABC的边长为2,求A,E,F,D所在圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为△外接圆的切线,的延长线交直线于点,分别为弦与弦上的点,且,四点共圆.

(Ⅰ)证明:是△外接圆的直径;
(Ⅱ)若,求过四点的圆的面积与△外接圆面积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:

(1)l是⊙O的切线;
(2)PB平分∠ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点是以线段为直径的圆上一点,于点,过点作圆的切线,与的延长线交于点,点的中点,连结并延长与相交于点,延长的延长线相交于点.

(Ⅰ)求证:
(Ⅱ)求证:是圆的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,为垂直于的一条弦,垂足为,弦交于点.

(Ⅰ)证明:四点共圆;
(Ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,过圆O外一点P作该圆的两条割线PAB和PCD,分别交圆 O于点A,B,C,D弦AD和BC交于Q点,割线PEF经过Q点交圆 O于点E、F,点M在EF上,且:
(I)求证:PA·PB=PM·PQ;  (II)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.

⑴证明:圆心O在直线AD上;
⑵证明:点C是线段GD的中点.

查看答案和解析>>

同步练习册答案