精英家教网 > 高中数学 > 题目详情

如图,为△外接圆的切线,的延长线交直线于点,分别为弦与弦上的点,且,四点共圆.

(Ⅰ)证明:是△外接圆的直径;
(Ⅱ)若,求过四点的圆的面积与△外接圆面积的比值.

(I)见解析;(II).

解析试题分析:(I)证明是△外接圆的直径,关键是证明,利用已知条件易于得到;在利用四点共圆,其对角互补即得证.
(II)通过连接明确四点的圆的直径为,得到;根据,得,从而将圆面积之比,转化成.
试题解析:(I)证明:∵为△外接圆的切线,∴
,∴

四点共圆,
是△外接圆的直径;
(II)连接
∴过四点的圆的直径为,由,得


故过四点的圆的面积与△外接圆面积的比值为,
.
考点:与圆相关的比例线段

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,在直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上的点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与CD有怎样的位置关系?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,内接于上,于点E,点F在DA的延长线上,,求证:

(1)的切线;
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的半径,且是半径上一点:延长交圆于点,过作圆的切线交的延长线于点.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=AC,AE=AB,BD,CE相交于点F.

(Ⅰ)求证:A,E,F,D四点共圆;
(Ⅱ)若正△ABC的边长为2,求A,E,F,D所在圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,己知边上一点,经过点,交于另一点经过点,交于另一点的另一交点为.

(I)求证:四点共圆;
(II)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交于BC于点E,AB=2AC.

(Ⅰ)求证:BE=2AD;
(Ⅱ)当AC=1,EC=2时,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,的直径,弦垂直,并与相交于点,点为弦上异于点的任意一点,连结并延长交于点.
⑴ 求证:四点共圆;
⑵ 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2 = EF·EC.

(Ⅰ)求证:CE·EB = EF·EP;
(Ⅱ)若CE:BE = 3:2,DE = 3,EF = 2,求PA的长.

查看答案和解析>>

同步练习册答案