精英家教网 > 高中数学 > 题目详情
.下列四个命题
① 分别和两条异面直线均相交的两条直线一定是异面直线.  
② 一个平面内任意一点到另一个平面之距离均相等,那么这两个平面平行.
③ 一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的平
面角相等或互补.   
④ 过两异面直线外一点能作且只能作出一条直线和这两条异面直线同时相交.其中正确命
题的个数是 
A.1B.2C.3D.4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱中,是侧棱的中点.

(Ⅰ)证明:
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

20.(本小题满分8分)如图,AB是⊙O的直径,PA⊥⊙O所在的平面,C是圆上一点,∠ABC = 30°,PA = AB.      
(1)求证:平面PAC⊥平面PBC
(2)求直线PC与平面ABC所成角的正切值;
(3)求二面角APBC的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在多面体中,四边形是正方形,平面,点的中点.

⑴求证:平面
⑵求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图1,在平面内,ABCD是的菱形,ADD``A1和CD D`C1都是正方形.将两个正方形分别沿AD,CD折起,使D``与D`重合于点D1 .设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图2).
  
(Ⅰ) 设二面角E – AC – D1的大小为q,若£q£,求线段BE长的取值范围;
(Ⅱ)在线段上存在点,使平面平面,求与BE之间满足的关系式,并证明:当0 < BE < a时,恒有< 1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在棱长均为2的正四棱锥中,点E为PC的中点,则下列命题正确的是(  )(正四棱锥即底面为正方形,四条侧棱长相等,顶点在底面上的射影为底面的中心的四棱锥)
A.,且直线BE到面PAD的距离为
B.,且直线BE到面PAD的距离为
C.,且直线BE与面PAD所成的角大于
D.,且直线BE与面PAD所成的角小于

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

⊿ABC中,AB=AC=5,BC=6,PA平面ABC,则点P到BC的距离是(  )
A. 4B.3C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
P为正方形ABCD所在平面外一点,PA⊥面ABCD,AE⊥PB,求证:AE⊥PC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图,四棱锥P-ABCD中,PA⊥底面ABCD,,AD=CD=1,∠=120°,=,∠=90°,M是线段PD上的一点(不包括端点).

(1)求证:BC⊥平面PAC;
(2)求异面直线AC与PD所成的角的余弦值
(3)试确定点M的位置,使直线MA与平面PCD所成角的正弦值为

查看答案和解析>>

同步练习册答案