精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(2ax-x2)eax,其中a为常数,且a≥0。
(Ⅰ)若a=1,求函数f(x)的极值点;
(Ⅱ)若函数f(x)在区间(,2)内单调递减,求a的取值范围。

解:(Ⅰ)依题意得f(x)=(2x-x2)ex
所以,f′(x)= (2- x2)ex,令f′(x)=0,得x=±
f(x),f′(x)随x的变化情况如下表:

 由上表可知,x=-是函数f(x)的极小值点,x=是函数f(x) 的极大值点。
(Ⅱ)
由函数f′(x)在区间(,2)上单调递减可知:f′(x)≤0对任意x∈(,2)恒成立,
当a=0时,f′(x)=-2x,显然,f′(x)≤0对任意x∈(,2)恒成立; 
当a>0时,f′(x)≤0等价于ax2-(2a2-2)x-2a≥0,
因为x∈(,2),不等式ax2-(2a2-2)x-2a≥0等价于
,则
在[,2]上显然有g'(x)>0恒成立,所以函数g(x)在[,2]单调递增,
所以g(x)在[,2]上的最小值为g()=0,
由于,f'(x)≤0对任意x∈(,2)恒成立等价于对任意x∈(,2)恒成立,
需且只需,即0≥,解得-1≤a≤1,
因为a>0,所以,0<a≤1;
综合上述,若函数f(x)在区间(,2)上单调递减,则实数a的取值范围为0≤a≤1。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案