精英家教网 > 高中数学 > 题目详情
已知,函数,记
(1)求函数的定义域及其零点;
(2)若关于的方程在区间内仅有一解,求实数的取值范围.
(1),0;(2)

试题分析:(1)均有意义时,才有意义,即两个对数的真数均大于0.解关于x的不等式即可得出的定义域,函数的零点,即,整理得,对数相等时底数相同所以真数相等,得到,基础x即为函数的零点(2),,应分两种情况讨论的单调性在求其值域。有分析可知在这两种情况下均为单调函数,所以的值域即为。解关于m的不等式即可求得m。所以本问的重点就是讨论单调性求其值域。
试题解析:(1)解:(1)
,解得
所以函数的定义域为                               2分
,则(*)方程变为
,即
解得                                    3分
经检验是(*)的增根,所以方程(*)的解为
所以函数的零点为,                              4分
(2)∵函数在定义域D上是增函数
∴①当时, 在定义域D上是增函数
②当时,函数在定义域D上是减函数    6分
问题等价于关于的方程在区间内仅有一解,
∴①当时,由(2)知,函数F(x)在上是增函数
∴只需  解得:
∴②当时,由(2)知,函数F(x)在上是减函数
 ∴只需   解得:  10分
综上所述,当时:;当时,(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知不等式的解集是
(1)求a,b的值;
(2)解不等式 (c为常数) .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知m、n为正整数,a>0且a≠1,且logam+loga+loga+…+loga=logam+logan,求m、n的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若loga(a2+1)<loga2a<0,则a的取值范围是(  )
A.(0,1)B.(0,)
C.(,1)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的两个极值点分别为,且,点表示的平面区域为,若函数的图象上存在区域内的点,则实数的取值范围为              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数的定义域为,值域为,若的最小值为,则实数的值为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知xy为正实数,则(  ).
A.2lg x+lg y=2lg x+2lg yB.2lg(xy)=2lg x·2lg y
C.2lg x·lg y=2lg x+2lg yD.2lg(xy)=2lg x·2lg y

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ABC中,若,则A=(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则      

查看答案和解析>>

同步练习册答案