分析 (1)利用an+1=Sn+1-Sn计算可知an+1=2n+1,进而可知数列{an}的通项an=2n;通过bn+1=bn+2、b1=1计算即可;
(2)通过an=2n、bn=2n-1可知cn=(2n-1)2n,n∈N*,利用错位相减法计算即得结论.
解答 解:(1)∵Sn=2n+1-2,
∴Sn+1=2n+2-2,
∴an+1=Sn+1-Sn=(2n+2-2)-(2n+1-2)=2n+1,
又∵a1=S1=22-2=2满足上式,
∴数列{an}的通项an=2n;
∵bn+1=bn+2,b1=1,
∴数列{bn}是以1为首项、2为公差的等差数列,
∴bn=b1+(n-1)d=1+2(n-1)=2n-1;
(2)∵an=2n,bn=2n-1,
∴cn=anbn=(2n-1)2n,n∈N*,
∴Tn=1•21+3•22+5•23+…+(2n-1)•2n,
2Tn=1•22+3•23+…+(2n-3)•2n+(2n-1)•2n+1,
两式相减得:-Tn=21+2(22+23+…+2n)-(2n-1)•2n+1
=2+2•$\frac{{2}^{2}(1-{2}^{n-1})}{1-2}$-(2n-1)•2n+1
=-6-(2n-3)•2n+1,
∴Tn=6+(2n-3)•2n+1.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 增函数 | B. | 减函数 | C. | 先增后减函数 | D. | 先减后增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 4 | 8 | 9 | 6 | 4 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 当x>0且x≠1时,lgx+$\frac{1}{lgx}$≥2 | B. | 2x+2-x≥2 | ||
| C. | 当x≥2时,x+$\frac{1}{x}$的最小值2 | D. | 当x>0时,sinx+$\frac{1}{sinx}$≥2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com