精英家教网 > 高中数学 > 题目详情
求函数y=
sin(2x-
π
3
)cot(2x-
π
3
)
的值域.
分析:根据同角三角形函数的关系,我们可以将函数的解析式化简为y=
cos(2x-
π
3
)
.(2x-
π
3
≠kπ)
,结合余弦函数的值域,我们即可得到答案.
解答:解:原函数化简为y=
cos(2x-
π
3
)
.(2x-
π
3
≠kπ)

y=
cos(2x-
π
3
)
.(2x-
π
3
≠kπ)
∈[0,1)
故函数y=
sin(2x-
π
3
)cot(2x-
π
3
)
的值域为[0,1)
点评:本题考查的知识是函数的值域,其中本题容易忽略2x-
π
3
≠kπ
,而错解为[0,1]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,
3
)

(1)求行列式
.
sinαtanα
1cosα
.
的值;
(2)若函数f(x)=cos(x+α)cosα+sin(x+α)sinα(x∈R),
求函数y=
3
f(
π
2
-2x)+cos2x+1
的最大值,并指出取到最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,直角坐标系xOy建立在湖泊的某一恰当位置,现准备在湖泊的一侧修建一条观光大道,它的前一段MD是以O为圆心,OD为半径的圆弧,后一段DBC是函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
),x∈[4,8]时的图象,图象的最高点为B(5,
8
3
)

(Ⅰ)求函数y=sin(ωx+φ)的解析式;
(Ⅱ)若在湖泊内修建如图所示的矩形水上乐园OEPF,其中折线FPE为水上赛艇线路,问点P落在圆弧MD上何处时赛艇线路最长?精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•钟祥市模拟)已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,
3
)

(1)求sin2α-tanα的值;
(2)若函数f(x)=cos(x-α)cosα-sin(x-α)sinα,求函数y=
3
f(
π
2
-2x)-2f2(x)
在区间[0,
3
]
上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=sin(
π
6
-
1
2
x)
,x∈[-2π,2π]的单调增区间
[-2π,
3
]∪[
3
,2π]
[-2π,
3
]∪[
3
,2π]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕尾二模)已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-
3
2
1
2
)

(Ⅰ)求sin2α-tanα的值;
(Ⅱ)若函数f(x)=cos(x-α)cosα-sin(x-α)sinα,求函数y=
3
f(
π
2
-2x)-2f2(x)
的最大值及对应的x的值.

查看答案和解析>>

同步练习册答案