精英家教网 > 高中数学 > 题目详情

判断下列函数的奇偶性
数学公式;   
数学公式
③y=x4+x;   
数学公式

解:①由x≠0得,即函数的定义域为(-∞,0)∪(0,+∞)关于原点对称,且f(-x)==-f(x),故函数是奇函数.
②由得,x=,则定义域为不关于原点对称.该函数不具有奇偶性.
③定义域为R,关于原点对称,且f(-x)=x4-x≠x4+x,f(-x)=x4-x≠-(x4+x),故其不具有奇偶性.
④定义域为R,关于原点对称,
当x>0时,f(-x)=-(-x)2-2=-(x2+2)=-f(x);
当x<0时,f(-x)=(-x)2+2=-(-x2-2)=-f(x);
当x=0时,f(0)=0;故该函数为奇函数.
分析:①根据分母不为零求出函数的定义域,先判断是否关于原点对称,再验证f(-x)与-f(x)的关系,最后下结论;
②根据偶次被开方数大于等于零求出函数的定义域,判断出不关于原点对称,再下结论;
③由解析式不受任何限制求出定义域为R,再验证f(-x)与-f(x)的关系,最后下结论;
④将解析式中的范围并在一起求出定义域为R,再分类讨论x>0时和x<0时f(-x)与-f(x)的关系,注意x的范围代入对应的关系式,最后下结论.
点评:本题考查了函数的奇偶性判断方法,先由解析式求出求出函数的定义域并判断是否关于原点对称,若不对称再下结论;否则,验证f(-x)与-f(x)的关系,最后下结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

判断下列函数的奇偶性
(A)f(x)=
0(x为无理数)
1(x为有理数)
 

(B)f(x)=ln(
1+x2
-x)
 

(C)f(x)=
1+sinx-cosx
1+sinx+cosx
 

(D)f(x)=
x
ax-1
+
x
2
,(a>0,a≠0)
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性.
(1)y=lg
tanx+1
tanx-1

(2)f(x)=lg(sinx+
1+sin2x
)

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性
(1)y=x4+
1x2
;         (2)f(x)=|x-2|-|x+2|

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性,并说明理由.
(1)f(x)=
1-x2
|x+3|-3
;  (2)f(x)=x2-|x-a|+2(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性,并证明:
(1)f(x)=x+
1x
           (2)f(x)=x4-1.

查看答案和解析>>

同步练习册答案