(本小题满分12分) 已知椭圆E:=1(a>b>o)的离心率e=,且经过点(,1),O为坐标原点。
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.
(1);(2)x-y+2=0.
【解析】
试题分析:(Ⅰ)根据椭圆E:椭圆E:=1(a>b>o)的离心率e=,可得a2=2b2,利用椭圆E:=1经过点(,1)我们有 ,从而可求椭圆E的标准方程;
(Ⅱ)连接OM,OP,OQ,设M(-4,m),由圆的切线性质及∠PMQ=60°,可知△OPM为直角三角形且∠OMP=30°,从而可求M(-4,4),进而以OM为直径的圆K的方程为(x+2)2+(y-2)2=8与圆O:x2+y2=8联立,两式相减可得直线PQ的方程.
解:(1)椭圆的标准方程为: ﹍﹍﹍﹍﹍﹍﹍4分
(2)连接QM,OP,OQ,PQ和MO交于点A,
有题意可得M(-4,m),∵∠PMQ=600
∴∠OMP=300,∵,
∵m>0,∴m=4,∴M(-4,4) ﹍﹍﹍﹍﹍﹍﹍7分
∴直线OM的斜率,有MP=MQ,OP=OQ可知OM⊥PQ,
,设直线PQ的方程为y=x+n ﹍﹍﹍﹍﹍﹍﹍9分
∵∠OMP=300,∴∠POM=600,∴∠OPA=300,
,即O到直线PQ的距离为, ﹍﹍﹍﹍10分
(负数舍去),∴PQ的方程为x-y+2=0. ﹍﹍﹍﹍12分
考点:本题以椭圆的性质为载体,考查椭圆的标准方程,考查圆与椭圆的综合。 是一道综合试题。
点评:解题的关键是确定M的坐标,进而确定以OM为直径的圆K的方程.
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com