精英家教网 > 高中数学 > 题目详情
设数列{an}前n的项和为 Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,m≠-3且m≠0
(1)求证:{an}是等比数列;
(2)若数列{an}的公比满足q=f(m)且为等差数列,并求bn
【答案】分析:(1)根据所给的关系式(3-m)Sn+2man=m+3,仿写一个关系式,两式相减,减掉了前n项和的形式,变成数列的递推式,得到连续两项的比值等于常数,证出是一个等比数列.
(2)根据所给的关于数列的关系式,看清题目的发展方向是求通项的倒数是一个等差数列,需要把关系式两边同时除以连续两项的积,得到结论,写出通项.
解答:解:(1)由(3-m)Sn+2man=m+3,得(3-m)Sn+1+2man+1=m+3,
两式相减,得(3+m)an+1=2man,(m≠-3)

∴{an}是等比数列.

点评:本题考查有递推式求通项,这是数列中常见的一种题目,在解题时注意要求证明数列是等比数列或等差数列,需要按照数列的定义来看题目的思路.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}前n的项和为Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,m≠-3且m≠0
(1)求证:{an}是等比数列;
(2)若数列{an}的公比满足q=f(m)且b1=a1=1,bn=
3
2
f(bn-1)
(n∈N*,n≥2),求证{
1
bn
}
为等差数列,并求bn

查看答案和解析>>

科目:高中数学 来源:江苏同步题 题型:解答题

设数列{an}前n的项和为 Sn,且(3﹣m)Sn+2man=m+3(n∈N*).其中m为常数,m≠﹣3且m≠0
(1)求证:{an}是等比数列;
(2)若数列{an}的公比满足q=f(m)且为等差数列,并求bn

查看答案和解析>>

科目:高中数学 来源:2005-2006学年北京市首师大附中高二(下)期末数学试卷(解析版) 题型:解答题

设数列{an}前n的项和为 Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,m≠-3且m≠0
(1)求证:{an}是等比数列;
(2)若数列{an}的公比满足q=f(m)且为等差数列,并求bn

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南京市六合高级中学高三(上)数学寒假作业(4)(解析版) 题型:解答题

设数列{an}前n的项和为 Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,m≠-3且m≠0
(1)求证:{an}是等比数列;
(2)若数列{an}的公比满足q=f(m)且为等差数列,并求bn

查看答案和解析>>

同步练习册答案