精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn,公差d≠0,a1=1,且a1,a2,a7成等比数列.
(1)求数列{an}的前n项和Sn
(2)设bn=
2Sn
2n-1
,数列{bn}的前n项和为Tn,求证:2Tn-9bn-1+18>
64bn
(n+9)bn+1
(n>1).
分析:(1)由题意知,(a1+d)2=a1(a1+6d),由此能够推出Sn=na1+
n(n-1)
2
d=n+2n(n-1)=2n2-n.
(2)证明:由题设条件可以推出{bn}是首项为2,公差为2的等差数列,所以Tn=
n(2+2n)
2
=n2+n,由此入手能够得到2Tn-9bn-1+18>
64bn
(n+9)bn+1
(n>1)
解答:解:(1)∵a1,a2,a7成等比数列,
∴a22=a1•a7,即(a1+d)2=a1(a1+6d),
又a1=1,d≠0,∴d=4.
∴Sn=na1+
n(n-1)
2
d=n+2n(n-1)=2n2-n.
(2)证明:由(1)知bn=
2Sn
2n-1
=
2n(2n-1)
2n-1
=2n,
∴{bn}是首项为2,公差为2的等差数列,
∴Tn=
n(2+2n)
2
=n2+n,
∴2Tn-9bn-1+18=2n2+2n-18(n-1)+18
=2n2-16n+36=2(n2-8n+16)+4=2(n-4)2+4≥4,当且仅当n=4时取等号.①
64bn
(n+9)bn+1
=
64×2n
(n+9)×2(n+1)
=
64n
n2+10n+9
=
64
n+
9
n
+10
64
6+10
=4.

当且仅当n=
9
n
即n=3时,取等号.②
∵①②中等号不能同时取到,∴2Tn-9bn-1+18>
64bn
(n+9)bn+1
(n>1)
点评:本题考查数列的性质和运算,具有一定的难度,解题时要认真审题,仔细解答,避免出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案