精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分13分)已知函数为常数,

(1)若是函数的一个极值点,求的值;

(2)求证:当时,上是增函数;

(3)若对任意的,总存在,使不等式成立,求正实数的取值范围.

【答案】(1)2;(2)见解析;(3).

【解析】

试题分析:(1)利用函数在处的导数为0即可求出的值;(2)利用函数的单调性与导数的关系跑到导函数在区间上恒大于0即可(3)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意=是否可以取到.

试题解析: 1分

(1)由已知,得 2分

3分

(2)当时,

4分

时, 5分

上是增函数

(3)时,由(2)知,上的最大值为

于是问题等价于:对任意的,不等式恒成立. 7分

. 8分

因为 9分

,可知在区间上递减,在此区间上,有

,与恒成立相矛盾,故,这时, 12分

上递增,恒有,满足题设要求,

实数的取值范围为 14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在中,角的对边分别为,且.

(1)求的值;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直线PQ与⊙O切于点AAB是⊙O的弦,∠PAB的平分线AC交⊙O于点C,连接CB,并延长与直线PQ相交于Q点.

(1)求证:QC·ACQC2QA2

(2)若AQ=6,AC=5,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=af(x)﹣1(a>0且a≠1).
(Ⅰ)求k的值;
(Ⅱ)求g(x)在[﹣1,2]上的最大值;
(Ⅲ)当a=时,g(x)≤t2﹣2mt+1对所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段: ,…后得到如下频率分布直方图.

(1)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的中位数(精确到0.1)、众数、平均数;

(2)用分层抽样的方法抽取一个容量为20的样本,求各分数段抽取的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:椭圆与双曲线有相同的焦点,它们在轴右侧有两个交点,满足.将直线左侧的椭圆部分(含 两点)记为曲线,直线右侧的双曲线部分(不含 两点)记为曲线.以为端点作一条射线,分别交于点,交于点(点在第一象限),设此时.

(1)求的方程;

(2)证明: ,并探索直线斜率之间的关系;

(3)设直线于点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为圆柱的轴,CD为底面直径,E为底面圆周上一点,AB=1,CD=2,CE=DE.
求(1)三棱锥A﹣CDE的全面积;
(2)点D到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).
(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.

查看答案和解析>>

同步练习册答案