精英家教网 > 高中数学 > 题目详情
已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)与直线x+y-1=0相交于A、B两点.
(1)若椭圆的半焦距c=
3
,直线x=±a与y=±b围成的矩形ABCD的面积为8,求椭圆的方程;
(2)若O(
OA
OB
=0
为坐标原点),求证:
1
a2
+
1
b2
=2

(3)在(2)的条件下,若椭圆的离心率e满足
3
3
≤e≤
2
2
,求椭圆长轴长的取值范围.
(1)∵椭圆的半焦距c=
3

直线x=±a与y=±b围成的矩形ABCD的面积为8,
∴2a•2b=8,
ab=2
a2-b2=3

解得a=2,b=1,
∴椭圆的标准方程为
x2
4
+y2=1

(2)证明:∵椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)与直线x+y-1=0相交于A、B两点,
∴设A(x1,y1),B(x2,y2),∵
OA
OB
,∴x1x2+y1y2=0,
y1=1-x1,y2=1-x2
∴2x1x2-(x1+x2)=0,①
又将y=1-x代入
x2
a2
+
y2
b2
=1
,得(a2+b2)x2-2a2x+a2(1-b2)=0,
∵△>0,∴x1+x2=
2a2
a2+b2
x1x2=
a2(1-b2)
a2+b2

代入①化简得
1
a2
+
1
b2
=2.
(3)∵e2=
c2
a2
=1-
b2
a2

1
3
≤1-
b2
a2
1
2

1
2
b2
a2
2
3

由(1)知b2=
a2
2a2-1

1
2
1
2a2-1
2
3

5
2
≤a≤
6
2

∴长轴2a∈[
5
6
].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点P(x0,y0)是椭圆C:
x2
5
+y2=1
上的一点.F1、F2是椭圆C的左右焦点.
(1)若∠F1PF2是钝角,求点P横坐标x0的取值范围;
(2)求代数式
y20
+2x0
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直线l:y=2x-4交抛物线y2=4x于A、B两点,试在抛物线AOB这段曲线上求一点P,使△ABP的面积最大,并求这个最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线
x2
m
-
y2
n
=1
(mn≠0)的离心率为2,有一个焦点恰好是抛物线y2=4x的焦点,则此双曲线的渐近线方程是(  )
A.
3
x±y=0
B.
3
y=0
C.3x±y=0D.x±3y=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知线段AB的端点B的坐标是(1,2),端点A在圆(x+1)2+y2=4上运动,点M是AB的中点.
(1)若点M的轨迹为曲线C,求此曲线的方程;
(2)设直线l:x+y+3=0,求曲线C上的点到直线l距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,a+b=3.
(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(0,4),离心率为
3
5

(1)求C的方程;
(2)求过点(3,0)且斜率为
4
5
的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
4
+y2=1的左、右顶点分别为A、B,圆x2+y2=4上有一动点P,P在x轴上方,C(1,0),直线PA交椭圆E于点D,连结DC,PB.
(Ⅰ)若∠ADC=90°,求△ADC的面积S;
(Ⅱ)设直线PB,DC的斜率存在且分别为k1,k2,若k1=2k2,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦点分别为F1,F2,线段F1F2被抛物线y2=2bx的焦点F内分成了3:1的两段.
(1)求椭圆的离心率;
(2)过点C(-1,0)的直线l交椭圆于不同两点A、B,且
AC
=2
CB
,当△AOB的面积最大时,求直线l和椭圆的方程.

查看答案和解析>>

同步练习册答案