精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.
分析:(Ⅰ)抛物线的准线为x=-
p
2
,于是8+
p
2
=10
,p=4,由此可知抛物线方程为y2=8x.
(Ⅱ)由题意得B(0,8),M(0,4),kFA=
4
3
kMN=-
3
4
,直线FA的方程为y=
4
3
(x-2)
,直线MN的方程为y=-
3
4
x+4
由此可知点N的坐标为(
16
5
8
5
)

(Ⅲ)由题意得,圆M的圆心坐标为(0,4),半径为4.当m=8时,直线AP的方程为x=8,此时,直线AP与圆M相离;当m≠8时,直线AP的方程为y=
8
8-m
(x-m)
,圆心M(0,4)到直线AP的距离d=
|32+4m|
64+(m-8)2
,由此可判断直线AP与圆M的位置关系.
解答:解:(Ⅰ)抛物线的准线为x=-
p
2
,于是8+
p
2
=10

∴p=4,∴抛物线方程为y2=8x(4分)
(Ⅱ)∵点A的坐标为(8,8),
由题意得B(0,8),M(0,4),又∵F(2,0),∴kFA=
4
3
(6分)
又MN⊥FA,∴kMN=-
3
4
,则直线FA的方程为y=
4
3
(x-2)

直线MN的方程为y=-
3
4
x+4
(8分)
联立方程组,解得
x=
16
5
y=
8
5
,∴点N的坐标为(
16
5
8
5
)
(10分)
(Ⅲ)由题意得,圆M的圆心坐标为(0,4),半径为4.
当m=8时,直线AP的方程为x=8,此时,直线AP与圆M相离(12分)
当m≠8时,直线AP的方程为y=
8
8-m
(x-m)

即为8x-(8-m)y-8m=0,所以圆心M(0,4)到直线AP的距离d=
|32+4m|
64+(m-8)2

令d>4,解得m>2;令d=4,解得m=2;令d<4,解得m<2(14分)
综上所述,当m>2时,直线AP与圆a+b>c相离;
当m=2时,直线AP与圆a+b>c相切;
当m<2时,直线AP与圆a+b>c相交.(16分)
点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知抛物线C:x2=2py(p>0)与圆O:x2+y2=8相交于A、B两点,且
OA
OB
=0
(O为坐标原点),直线l与圆O相切,切点在劣弧AB(含A、B两点)上,且与抛物线C相交于M、N两点,d是M、N两点到抛物线C的焦点的距离之和.
(Ⅰ)求p的值;
(Ⅱ)求d的最大值,并求d取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.
(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;
(Ⅱ)假设直线PQ过点T(5,-2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数?如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州一模)如图,已知抛物线C:y2=4x的焦点为F,过F的直线l与抛物线C交于A(x1,y1)(y1>0),B(x2,y2)两点,T为抛物线的准线与x轴的交点.
(1)若
TA
TB
=1
,求直线l的斜率;
(2)求∠ATF的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=4x焦点为F,直线l经过点F且与抛物线C相交于A、B两点.
(Ⅰ)若线段AB的中点在直线y=2上,求直线l的方程;
(Ⅱ)若|AB|=20,求直线l的方程.

查看答案和解析>>

同步练习册答案