精英家教网 > 高中数学 > 题目详情

已知sin(α+β)=1,求证:tan(2α+β)+tanβ=0

证明:∵sin(α+β)=1,∴α+β=2kπ+(k∈Z)

把α代入到等式左边得:

=tan(4kπ+π-2β+β)+tanβ
=tan(4kπ+π-β)+tanβ
=tan(π-β)+tanβ
=-tanβ+tanβ=0,
∴tan(2α+β)+tanβ=0
分析:要证明等式成立即先化简等式的左边看是否为0,方法是由特殊角的三角函数值求出α,将其代入到等式左边利用诱导公式化简可得值为0得证.
点评:此题考查学生会利用特殊角的三角函数值求角度,灵活运用诱导公式化简求值.证明的思路化简等式左边.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(
π
4
+x)=
5
5
,且
π
4
<x
4
,则sin(
π
4
-x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(3π+α)=lg
1
310
,则
cos(π+α)
cosα[cos(π-α)-1]
+
cos(α-2π)
cosαcos(π-α)+cos(α-2π)
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ=
1-a
1+a
,cosθ=
3a-1
1+a
,若θ是第二象限角,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α+β)=-
3
5
,cos(α-β)=
12
13
,且
π
2
<β<α<
4
,求sin2α.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=-
12
且α是第三象限角,求cosα、tanα的值.

查看答案和解析>>

同步练习册答案