精英家教网 > 高中数学 > 题目详情
(本小题13分)曲线上任意一点M满足, 其中F(-F( 抛物线的焦点是直线y=x-1与x轴的交点, 顶点为原点O.
(1)求的标准方程;
(2)请问是否存在直线满足条件:①过的焦点;②与交于不同
两点,且满足?若存在,求出直线的方程;若不
存在,说明理由.
(1) 的方程为:的方程为:
(2)存在直线满足条件,且的方程为

试题分析:(1)由题意结合椭圆的定义和抛物线的焦点坐标,得到关系式。
(2)假设存在这样的直线,设其方程为,联立方程组,结合韦达定理和向量数量积得到。
解:(1) 的方程为:的方程为:
(2)假设存在这样的直线,设其方程为,两交点坐标为
消去,得
     ①

,②

将①②代入③得,解得
所以假设成立,即存在直线满足条件,且的方程为
点评:解决该试题的关键是能利用图像变换准确得到曲线的方程然后利用向量的数量积来求解得到参数的值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点.(3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以为斜边的直角三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线(p>0)的焦点与双曲线的右焦点的连线交于第一象限的点。若在点处的切线平行于的一条渐近线。则(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点坐标是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点坐标为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线上一点轴的距离为3,则点到抛物线的焦点的距离为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点是抛物线上的动点,是抛物线的焦点,若点,则的最小值是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线在点(0,1)处的切线方程为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设曲线与直线相切,则________ 

查看答案和解析>>

同步练习册答案