精英家教网 > 高中数学 > 题目详情
已知点是抛物线上的动点,是抛物线的焦点,若点,则的最小值是         .

试题分析:过P作准线l的垂线PM,垂足为M,则|PF|=|PM|,所以=|PA|+|PM|,
过A作AN垂直准线l,垂直为N,则=|PA|+|PM|,显然当点P为AN与抛物线的交点时,
取得最小值|AN|=.
点评:解本小题的关键是把P到F的距离转化为P到准线的距离,从而转化为求=|PA|+|PM|
的最小值,再利用三角形两边之差小于第三边可知=|PA|+|PM|.到此问题得解.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

过抛物线的焦点F作斜率分别为的两条不同的直线,且相交于点A,B,相交于点C,D。以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为
(I)若,证明;
(II)若点M到直线的距离的最小值为,求抛物线E的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图所示,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴交于点M,且y1y2=-1,

(Ⅰ)求证:点的坐标为
(Ⅱ)求证:OA⊥OB;
(Ⅲ)求△AOB面积的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线上一点P到y轴的距离是4,则点P到该抛物线的焦点的距离是  (     )
A.6 B.4C.8D.12

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为,若双曲线的一条渐近线与直线平行,则实数的值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)曲线上任意一点M满足, 其中F(-F( 抛物线的焦点是直线y=x-1与x轴的交点, 顶点为原点O.
(1)求的标准方程;
(2)请问是否存在直线满足条件:①过的焦点;②与交于不同
两点,且满足?若存在,求出直线的方程;若不
存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是抛物线的焦点,是该抛物线上的动点,则线段中点的轨迹方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知直线上有一个动点,过点作直线垂直于轴,动点上,且满足
(为坐标原点),记点的轨迹为.
(1)求曲线的方程;
(2)若直线是曲线的一条切线, 当点到直线的距离最短时,求直线的方程. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,设是抛物线上一点,且在第一象限. 过点作抛物线的切线,交轴于点,过点作轴的垂线,交抛物线于点,此时就称确定了.依此类推,可由确定.记

给出下列三个结论:

②数列为单调递减数列;
③对于,使得.
其中所有正确结论的序号为__________。

查看答案和解析>>

同步练习册答案