精英家教网 > 高中数学 > 题目详情

【题目】某电脑公司在甲、乙两地各有一个分公司,甲分公司现有电脑6,乙分公司现有同一型号的电脑12.A地某单位向该公司购买该型号的电脑10,B地某单位向该公司购买该型号的电脑8.已知从甲地运往A,B两地每台电脑的运费分别是40元和30,从乙地运往A,B两地每台电脑的运费分别是80元和50. 若总运费不超过1000,则调运方案的种数为

A1 B2

C3 D4

【答案】C

【解析】设甲地调运x台电脑至B,则剩下(6-x)台电脑调运至A地;乙地应调运(8-x)台电脑至B,运往A12-(8-x)=(x+4)台电脑().

则总运费,.

y1000,,x2.,,x=0,1,2,即能有3种调运方案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x-1|+|x+1|(x∈R).

(1)证明:函数f(x)是偶函数;

(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图象;

(3)写出函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中,命题实数满足

|x-3|≤1 .

(1)若为真,求实数的取值范围;

(2)若的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0.

(1)求证:f(x)是奇函数;

(2)若f(1)=,试求f(x)在区间[-2,6]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是直角梯形,,,侧面底面,是以为底的等腰三角形.

)证明:

)若四棱锥的体积等于.问:是否存在过点的平面分别交于点,使得平面平面?若存在,求出的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量

(1)将利润表示为月产量的函数

(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若函数 的图象在点 处的切线的倾斜角为 ,对于任意的,函数在区间上总不是单调函数, 的取值范围;

(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列三个集合:

{x|yx2+1};

{y|yx2+1};

{(xy)|yx2+1}.

(1)它们是不是相同的集合?

(2)它们各自的含义是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第x年与年产量f(x) 万件之间的关系如下表所示:

x

1

2

3

4

f(x)

4.00

5.58

7.00

8.44

f(x)近似符合以下三种函数模型之一:f(x)=axbf(x)=2xaf(x)=logxa.

(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;

(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.

查看答案和解析>>

同步练习册答案