如图,正三棱柱ABC-A1B1C1中,D、E分别是BC、CC1的中点,AB=AA1.
(1)求二面角B-AD-B1的正切值;
(2)证明:BE⊥平面AB1D;
(3)求异面直线DE与A1B1所成角的大小.
|
解:(1)在正三棱柱ABC-A1B1C1中,∵BD=DC,∴AD⊥BC, 又B1B⊥底面ABC, 由三垂线定理,知AD⊥DB1 ∴∠B1DB就是二面角B-AD-B1的平面角,在Rt△B1BD中,tan∠B1DB= (2)∵下面BCC1B1为正方形,CE=EC1,BD=DE,∴BE⊥DB1 (6分) 又AD⊥侧面BCC1B1,∴AD⊥BE,∴BE⊥平面AB1D (8分)
(3)取AC中点F,连FD,EF,∵A1B1∥AB∥DF, ∴∠EDF就是DE与A1B1所成的角. 设正三棱柱的各棱长均为2 即DE与A1B1所成的角为 |
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| AO | OB1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com