ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,FÊÇÅ×ÎïÏßC:x2=2py(p>0)µÄ½¹µã,MÊÇÅ×ÎïÏßCÉÏλÓÚµÚÒ»ÏóÏÞÄÚµÄÈÎÒâÒ»µã,¹ýM,F,OÈýµãµÄÔ²µÄÔ²ÐÄΪQ,µãQµ½Å×ÎïÏßCµÄ×¼ÏߵľàÀëΪ
.
(1)ÇóÅ×ÎïÏßCµÄ·½³Ì;
(2)ÊÇ·ñ´æÔÚµãM,ʹµÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓÚµãM?Èô´æÔÚ,Çó³öµãMµÄ×ø±ê;Èô²»´æÔÚ,˵Ã÷ÀíÓÉ.
(3)ÈôµãMµÄºá×ø±êΪ
,Ö±Ïßl:y=kx+
ÓëÅ×ÎïÏßCÓÐÁ½¸ö²»Í¬µÄ½»µãA,B,lÓëÔ²QÓÐÁ½¸ö²»Í¬µÄ½»µãD,E,Çóµ±
¡Ük¡Ü2ʱ,|AB|2+|DE|2µÄ×îСֵ.
£¨1£©x2=2y £¨2£©´æÔÚµãM(
,1) £¨3£©![]()
½âÎö½â:(1)ÒÀÌâÒâÖªF
,Ô²ÐÄQÔÚÏß¶ÎOFµÄ´¹Ö±Æ½·ÖÏßy=
ÉÏ,
ÒòΪÅ×ÎïÏßCµÄ×¼Ïß·½³ÌΪy=-
,
ËùÒÔ
=
,
¼´p=1.
Òò´ËÅ×ÎïÏßCµÄ·½³ÌΪx2=2y.
(2)¼ÙÉè´æÔÚµãM
(x0>0)Âú×ãÌõ¼þ,Å×ÎïÏßCÔÚµãM´¦µÄÇÐÏßбÂÊΪy¡ä
=![]()
=x0,
ËùÒÔÖ±ÏßMQµÄ·½³ÌΪy-
=x0(x-x0).
Áîy=
µÃxQ=
+
.
ËùÒÔQ£¨
+
,
£©.
ÓÖ|QM|=|OQ|,
¹Ê£¨
-
£©2+£¨
-
£©2=£¨
+
£©2+
,
Òò´Ë£¨
-
£©2=
.
ÓÖx0>0,
ËùÒÔx0=
,´ËʱM(
,1).
¹Ê´æÔÚµãM(
,1),
ʹµÃÖ±ÏßMQÓëÅ×ÎïÏßCÏàÇÐÓÚµãM.
(3)µ±x0=
ʱ,ÓÉ(2)µÃQ£¨
,
£©,
¨‘QµÄ°ë¾¶Îªr=
=
,
ËùÒÔ¨‘QµÄ·½³ÌΪ£¨x-
£©2+£¨y-
£©2=
.
ÓÉ![]()
ÕûÀíµÃ2x2-4kx-1=0.
ÉèA,BÁ½µãµÄ×ø±ê·Ö±ðΪ(x1,y1),(x2,y2),
ÓÉÓÚ¦¤1=16k2+8>0,x1+x2=2k,x1x2=-
,
ËùÒÔ|AB|2=(1+k2)[(x1+x2)2-4x1x2]
=(1+k2)(4k2+2).
ÓÉ![]()
ÕûÀíµÃ(1+k2)x2-
x-
=0.
ÉèD,EÁ½µãµÄ×ø±ê·Ö±ðΪ(x3,y3),(x4,y4),
ÓÉÓÚ¦¤2=
+
>0,x3+x4=
,
x3x4=-
.
ËùÒÔ|DE|2=(1+k2)[(x3+x4)2-4x3x4]
=
+
.
Òò´Ë|AB|2+|DE|2=(1+k2)(4k2+2)+
+
.
Áî1+k2=t,
ÓÉÓÚ
¡Ük¡Ü2,
Ôò
¡Üt¡Ü5,
ËùÒÔ|AB|2+|DE|2=t(4t-2)+
+![]()
=4t2-2t+
+![]()
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
ÒÑ֪˫ÇúÏß¹ýµã(3£¬£2)£¬ÇÒÓëÍÖÔ²4x2£«9y2£½36ÓÐÏàͬµÄ½¹µã£®
(1)ÇóË«ÇúÏߵıê×¼·½³Ì£»
(2)ÇóÒÔË«ÇúÏßµÄÓÒ×¼ÏßΪ׼ÏßµÄÅ×ÎïÏߵıê×¼·½³Ì£®
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
¹ýË«ÇúÏß![]()
µÄ×ó½¹µã![]()
£¬×÷Çãб½ÇΪ
µÄÖ±Ïß
½»¸ÃË«ÇúÏßÓÒÖ§ÓÚµã
£¬Èô
£¬ÇÒ
£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ__________£®
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
Èçͼ,ÍÖÔ²µÄÖÐÐÄΪԵãO,³¤ÖáÔÚxÖáÉÏ,ÀëÐÄÂÊe=
,¹ý×ó½¹µãF1×÷xÖáµÄ´¹Ïß½»ÍÖÔ²ÓÚA¡¢A¡äÁ½µã,
=4.![]()
(1)Çó¸ÃÍÖÔ²µÄ±ê×¼·½³Ì;
(2)ȡƽÐÐÓÚyÖáµÄÖ±ÏßÓëÍÖÔ²ÏཻÓÚ²»Í¬µÄÁ½µãP¡¢P¡ä,¹ýP¡¢P¡ä×÷Ô²ÐÄΪQµÄÔ²,ʹÍÖÔ²ÉÏµÄÆäÓàµã¾ùÔÚÔ²QÍâ.Çó¡÷PP¡äQµÄÃæ»ýSµÄ×î´óÖµ,²¢Ð´³ö¶ÔÓ¦µÄÔ²QµÄ±ê×¼·½³Ì.
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
ÈçͼËùʾ,ÉèÍÖÔ²µÄÖÐÐÄΪԵãO,³¤ÖáÔÚxÖáÉÏ,É϶¥µãΪA,×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2,Ïß¶ÎOF1¡¢OF2µÄÖеã·Ö±ðΪB1¡¢B2,ÇÒ¡÷AB1B2ÊÇÃæ»ýΪ4µÄÖ±½ÇÈý½ÇÐÎ.![]()
(1)Çó¸ÃÍÖÔ²µÄÀëÐÄÂʺͱê×¼·½³Ì;
(2)¹ýB1×÷Ö±Ïß½»ÍÖÔ²ÓÚP¡¢QÁ½µã,ʹPB2¡ÍQB2,Çó¡÷PB2QµÄÃæ»ý.
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
ÒÑ֪˫ÇúÏßCµÄ·½³ÌΪ
-
=1(a>0,b>0),ÀëÐÄÂÊe=
,¶¥µãµ½½¥½üÏߵľàÀëΪ
.![]()
(1)ÇóË«ÇúÏßCµÄ·½³Ì;
(2)Èçͼ,PÊÇË«ÇúÏßCÉÏÒ»µã,A¡¢BÁ½µãÔÚË«ÇúÏßCµÄÁ½Ìõ½¥½üÏßÉÏ,ÇÒ·Ö±ðλÓÚµÚÒ»¡¢¶þÏóÏÞ.Èô
=¦Ë
,¦Ë¡Ê
.Çó¡÷AOBµÄÃæ»ýµÄȡֵ·¶Î§.
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
ÉèÍÖÔ²
+
=1(a>b>0)µÄ×ó,ÓÒ½¹µã·Ö±ðΪF1,F2,µãP(a,b)Âú×ã|PF2|=|F1F2|.
(1)ÇóÍÖÔ²µÄÀëÐÄÂÊe;
(2)ÉèÖ±ÏßPF2ÓëÍÖÔ²ÏཻÓÚA,BÁ½µã.ÈôÖ±ÏßPF2ÓëÔ²(x+1)2+(y-
)2=16ÏཻÓÚM,NÁ½µã,ÇÒ|MN|=
|AB|,ÇóÍÖÔ²µÄ·½³Ì.
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
¹ýÍÖÔ²
µÄ×ó¶¥µã
×÷бÂÊΪ2µÄÖ±Ïߣ¬ÓëÍÖÔ²µÄÁíÒ»¸ö½»µãΪ
£¬Óë
ÖáµÄ½»µãΪ
£¬ÒÑÖª
.
£¨1£©ÇóÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©É趯ֱÏß
ÓëÍÖÔ²ÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã
£¬ÇÒÓëÖ±Ïß
ÏཻÓÚµã
£¬Èô
ÖáÉÏ´æÔÚÒ»¶¨µã
£¬Ê¹µÃ
£¬ÇóÍÖÔ²µÄ·½³Ì.
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
ÒÑÖªÍÖÔ²C:
+
=1(a>b>0)µÄÓÒ½¹µãΪF(1,0),ÇÒµã(-1,
)ÔÚÍÖÔ²CÉÏ.
(1)ÇóÍÖÔ²CµÄ±ê×¼·½³Ì.
(2)ÒÑÖªµãQ(
,0),¶¯Ö±Ïßl¹ýµãF,ÇÒÖ±ÏßlÓëÍÖÔ²C½»ÓÚA,BÁ½µã,Ö¤Ã÷:
¡¤
Ϊ¶¨Öµ.
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com