如图,椭圆的中心为原点O,长轴在x轴上,离心率e=,过左焦点F1作x轴的垂线交椭圆于A、A′两点,=4.
(1)求该椭圆的标准方程;
(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.
(1)+=1 (2)2 (x+)2+y2=6,(x-)2+y2=6
解析解:(1)由题意知点A(-c,2)在椭圆上,则+=1,从而e2+=1,
又e=,故b2==8,从而a2==16.
故该椭圆的标准方程为+=1.
(2)由椭圆的对称性,可设Q(x0,0).又设M(x,y)是椭圆上任意一点,则|QM|2=(x-x0)2+y2=x2-2x0x++8×(1-)=(x-2x0)2-+8(x∈[-4,4]).
设P(x1,y1),由题意知,P是椭圆上到Q的距离最小的点,
因此,当x=x1时|QM|2取最小值,
又x1∈(-4,4),所以当x=2x0时|QM|2取最小值,
从而x1=2x0,且|QP|2=8-.
由对称性知P′(x1,-y1),故|PP′|=|2y1|,
所以S=|2y1||x1-x0|
=×2|x0|
=
=·.
当x0=±时,△PP′Q的面积S取得最大值2.
此时对应的圆Q的圆心坐标为Q(±,0),半径|QP|==,
因此,这样的圆有两个,其标准方程分别为(x+)2+y2=6,(x-)2+y2=6.
科目:高中数学 来源: 题型:解答题
已知,直线,为平面上的动点,过点作的垂线,垂足为点,且.
(1)求动点的轨迹曲线的方程;
(2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(1)求曲线Γ的方程;
(2)当点P在第一象限,且时,求点M的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知A,B分别是椭圆C1:+=1的左、右顶点,P是椭圆上异于A,B的任意一点,Q是双曲线C2:-=1上异于A,B的任意一点,a>b>0.
(1)若P(,),Q(,1),求椭圆C1的方程;
(2)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1·k2+k3·k4为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.
(3)若点M的横坐标为,直线l:y=kx+与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当≤k≤2时,|AB|2+|DE|2的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知常数,向量,经过定点以为方向向量的直线与经过定点以为方向向量的直线相交于,其中,
(1)求点的轨迹的方程;(2)若,过的直线交曲线于两点,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心为坐标原点,短轴长为2,一条准线的方程为l:x=2.
(1)求椭圆的标准方程.
(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com