精英家教网 > 高中数学 > 题目详情

设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于AB两点,点C在抛物线的准线上,且BCx轴,证明:直线AC经过原点O.

详见解析

解析试题分析:证明直线AC经过原点O,实质证明三点共线,即证直线与直线的斜率相等. 设A(x1,y1),则只需证即可.利用三点共线,可用A(x1,y1)表示出点B纵坐标为,从而点C的坐标为(-,).因此直线CO的斜率为k===,所以直线AC经过原点O.
试题解析:证:如图所示,因为抛物线y2=2px(p>0)的焦点为F(,0),所以经过点F的直线AB的方程可设为x=my+       2分
代入抛物线方程得y2-2pmy-p2=0.
若记A(x1,y1)、B(x2,y2),则y1、y2是该方程的两个根,所以y1y2=-p2    7分.
因为BC∥x轴,且点C在准线x=-上,所以点C的坐标为(-,y2).
故直线CO的斜率为k===,
即k也是直线OA的斜率,所以直线AC经过原点O.        12分
考点:直线与抛物线位置关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线2x-y-4=0上,求抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(1)求曲线Γ的方程;
(2)当点P在第一象限,且时,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过双曲线的左焦点,作倾斜角为的直线交该双曲线右支于点,若,且,则双曲线的离心率为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,△ABC的顶点B、C的坐标为B(-2,0),C(2,0),直线AB,AC的斜率乘积为,设顶点A的轨迹为曲线E.
(1)求曲线E的方程;
(2)设曲线E与y轴负半轴的交点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与曲线E的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的中心为原点O,长轴在x轴上,离心率e=,过左焦点F1作x轴的垂线交椭圆于A、A′两点,=4.

(1)求该椭圆的标准方程;
(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线C的方程为-=1(a>0,b>0),离心率e=,顶点到渐近线的距离为.

(1)求双曲线C的方程;
(2)如图,P是双曲线C上一点,A、B两点在双曲线C的两条渐近线上,且分别位于第一、二象限.若,λ∈.求△AOB的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线l与椭圆+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且椭圆的离心离e=,又椭圆经过点(,1),O为坐标原点.
(1)求椭圆的方程.
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆=1的焦点为F1、F2,点P为椭圆上的动点,当∠F1PF2为钝角时,求点P的横坐标x0的取值范围.

查看答案和解析>>

同步练习册答案