精英家教网 > 高中数学 > 题目详情
2.如图,三棱锥A-BCD中,AB=BC=CD=DA=BD=AC=2a,E,F,G,H分别是AB,BC,CD,DA的中点.
(1)证明四边形EFGH是四边形
(2)求多面体BD-EFGH的体积.

分析 (1)在△ABC中,E、F分别是边AB、BC中点,得到EF∥AC,且EF=$\frac{1}{2}$AC,GH∥AC,且GH=$\frac{1}{2}$AC,得到四边形EFGH是平行四边形.
(2)求出三棱锥的体积,由对称性易知平面EFGH将正四面体两等分,即可得出结论.

解答 (1)证明:在△ABC中,E、F分别是边AB、BC中点,
所以EF∥AC,且EF=$\frac{1}{2}$AC,
同理有GH∥AC,且GH=$\frac{1}{2}$AC,
∴EF∥GH且EF=GH,
故四边形EFGH是平行四边形.
(2)解:显然这个三棱锥是正四面体,高为$\sqrt{(2a)^{2}-(\frac{2\sqrt{3}}{3}a)^{2}}$=$\frac{2\sqrt{6}}{3}$a,其体积为V=$\frac{1}{3}•\frac{\sqrt{3}}{4}•4{a}^{2}•\frac{2\sqrt{6}}{3}a$=$\frac{2\sqrt{2}}{3}{a}^{3}$,
∵AB=BC=CD=DA=BD=AC=2a,E,F,G,H分别是AB,BC,CD,DA的中点,
∴四边形EFGH为正方形.
由对称性易知平面EFGH将正四面体两等分,
∴多面体BD-EFGH的体积为$\frac{\sqrt{2}}{3}{a}^{3}$.

点评 主要考查知识点:简单几何体和公理四,多面体BD-EFGH的体积.公理四:和同一条直线平行的直线平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知a,b,c∈R+,求证:2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)是反比例函数,且满足f(3)=-6,则f(x)的解析式为f(x)=$-\frac{18}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.判断下列函数的奇偶性:
(1)f(x)=$\frac{(1+{2}^{x})^{2}}{{2}^{x}}$;
(2)f(x)=lg(x+$\sqrt{{x}^{2}+1}$);
(3)f(x)=lgx2+lg$\frac{1}{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若输出的i=5,则k的最小正整数值为(  )
A.88B.89C.8095D.8096

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知直角三角形ABC,其三边分为a,b,c,(a>b>c).分别以三角形的a边,b边,c边所在直线为轴旋转一周形成三个几何体,其体积分别为V1,V2,V3,则它们的关系为(  )
A.V1>V2>V3B.V1<V2<V3C.V1=V2<V3D.V1<V2=V3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列命题中正确命题是③④(写出所有正确命题的序号)
①命题“?x0∈R,x02-x0-1<0”的否定是“?x0∈R,x02-x0-1>0”;
②f(x)=|sinx|+|cosx|,则f(x)的最小正周期是π;
③若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;
④平面α,β,直线a,b满足:α∥β,a?α,b?β,必存在与a,b都垂直的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知随机变量X服从正态分布N(3,1),且P(X>4)=0.1587,则P(2≤X≤4)等于(  )
A.0.3413B.0.1585C.0.8413D.0.6826

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义运算“*”如下:x*y=$\left\{\begin{array}{l}{x,x≥y}\\{y,x<y}\end{array}\right.$,若函数f(x)=(1-2x)*(2x-3),则f(x)等于(  )
A.$\left\{\begin{array}{l}1-{2}^{x},x≤1\\{2}^{x}-3,x>1\end{array}\right.$B.$\left\{\begin{array}{l}{{2}^{x}-3,x<1}\\{1-{2}^{x},x≥1}\end{array}\right.$
C.$\left\{\begin{array}{l}{{2}^{x}-4,x≥1}\\{2-{2}^{x},x<1}\end{array}\right.$D.$\left\{\begin{array}{l}{{4}^{x}-3,x<1}\\{1-{4}^{x},x≥1}\end{array}\right.$

查看答案和解析>>

同步练习册答案