精英家教网 > 高中数学 > 题目详情

【题目】函数y=log (x2﹣2x)的单调递增区间是(
A.(﹣∞,0)
B.(﹣∞,1)
C.(2,+∞)
D.(1,+∞)

【答案】A
【解析】解:由x2﹣2x>0解得x<0或x>2,
∴函数 的定义域为(﹣∞,0)∪(2,+∞),
函数 可看作由y= 和u=x2﹣2x复合而成的,
∵u=x2﹣2x=(x﹣1)2﹣1在(﹣∞,0)上单调递减,在(2,+∞)上单调递增,且y= 单调递减,
∴f(x)在(﹣∞,0)上单调递增,在(2,+∞)上单调递减,
故f(x)的单调增区间为:(﹣∞,0).
故选A.
先求出函数的定义域,然后把函数f(x)分解为y= 和u=x2﹣2x,再根据复合函数单调性的判断规则,即“同增异减”,即可求得函数f(x)的单调增区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2﹣4x,那么当x<0时,f(x)= , 不等式f(x+2)<5的解集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程为.

(1)若函数时有极值,求的解析式;

(2)函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{}中,,公比,且的等比中项为2.

(1)求数列{}的通项公式;

(2)设求:数列{}的前项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下:

若以上表中频率作为概率,且每天的销售量相互独立.

(1)求5天中该种商品恰好有两天的日销售量为1.5吨的概率;

(2)已知每吨该商品的销售利润为2千元, 表示该种商品某两天销售利润的和(单位:千元),求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上不恒为0的函数,且对于任意的实数a,b满足f(2)=2,f(ab)=af(b)+bf(a),an= (n∈N*),bn= (n∈N*),给出下列命题:
①f(0)=f(1);
②f(x)为奇函数;
③数列{an}为等差数列;
④数列{bn}为等比数列.
其中正确的命题是 . (写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相北上广深等十余大中城市,一款叫“一度用车”的共享汽车在广州提供的车型是“奇瑞eQ”,每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:

时间(分钟)

次数

8

14

8

8

2

以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为分钟.

(Ⅰ)若李先生上.下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),f(0)≠0,f(1)=2,当x>0,f(x)>1,且对任意a,b∈R,有f(a+b)=f(a)f(b).
(1)求f(0)的值.
(2)求证:对任意x∈R,都有f(x)>0.
(3)若f(x)在R上为增函数,解不等式f(3﹣2x)>4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是直线与椭圆的一个公共点, 分别为该椭圆的左右焦点,设取得最小值时椭圆为.

(1)求椭圆的标准方程及离心率;

(2)已知为椭圆上关于轴对称的两点, 是椭圆上异于的任意一点,直线分别与轴交于点,试判断是否为定值;如果为定值,求出该定值;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案