【题目】在等比数列{}中,,公比,且, 与的等比中项为2.
(1)求数列{}的通项公式;
(2)设 ,求:数列{}的前项和为,
【答案】(1)(2)
【解析】
试题分析:(1)由a1a5=,a2a8=原式可化为+2a3a5+=25,即a3+a5=5,又由a3a5=4,解出q,a1即可.(2)代入中,得到bn=5-n,即数列,{bn}是以4为首项,-1为公差的等差数列,根据等差数列的前n项和公式求之即可.
试题解析:解:(1)因为a1a5+2a3a5+a2a8=25,所以,+2a3a5+=25
又an>o,…a3+a5=5, 3分
又a3与a5的等比中项为2,所以,a3a5=4
而q(0,1),所以,a3>a5,所以,a3=4,a5=1,,a1=16,所以,
6分
(2)bn=log2an=5-n,所以,bn+1-bn=-1,
所以,{bn}是以4为首项,-1为公差的等差数列 8分
所以, 10分
科目:高中数学 来源: 题型:
【题目】某课题组对春晚参加“咻一咻”抢红包活动的同学进行调查,按照使用手机系统不同(安卓系统和IOS系统)分别随机抽取5名同学进行问卷调查,发现他们咻得红包总金额数如表所示:
手机系统 | 一 | 二 | 三 | 四 | 五 |
安卓系统(元) | 2 | 5 | 3 | 20 | 9 |
IOS系统(元) | 4 | 3 | 18 | 9 | 7 |
(1)如果认为“咻”得红包总金额超过6元为“咻得多”,否则为“咻得少”,请判断手机系统与咻得红包总金额的多少是否有关?
(2)要从5名使用安卓系统的同学中随机选出2名参加一项活动,以X表示选中的同学中咻得红包总金额超过6元的人数,求随机变量X的分布列及数学期望E(X).
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
独立性检验统计量 ,其中n=a+b+c+d.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为: (t为参数,其中0<α< ),椭圆M的参数方程为 (β为参数),圆C的标准方程为(x﹣1)2+y2=1.
(1)写出椭圆M的普通方程;
(2)若直线l为圆C的切线,且交椭圆M于A,B两点,求弦AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一种计算装置,有一数据入口A和一个运算出口B,按照某种运算程序:①当从A口输入自然数1时,从B口得到 ,记为 ;②当从A口输入自然数n(n≥2)时,在B口得到的结果f(n)是前一个结果f(n﹣1)的 倍. (Ⅰ)当从A口分别输入自然数2,3,4时,从B口分别得到什么数?
(Ⅱ)根据(Ⅰ)试猜想f(n)的关系式,并用数学归纳法证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为M函数:
(i)对任意的x∈[0,1],恒有f(x)≥0;
(ii)当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.
则下列四个函数中不是M函数的个数是( )
①f(x)=x2②f(x)=x2+1
③f(x)=ln(x2+1)④f(x)=2x﹣1.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, .
(Ⅰ)当时,求函数的极值;
(Ⅱ)当时,讨论函数单调性;
(Ⅲ)是否存在实数,对任意的, ,且,有恒成立?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com