精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,直线l的参数方程为: (t为参数,其中0<α< ),椭圆M的参数方程为 (β为参数),圆C的标准方程为(x﹣1)2+y2=1.
(1)写出椭圆M的普通方程;
(2)若直线l为圆C的切线,且交椭圆M于A,B两点,求弦AB的长.

【答案】
(1)解:由椭圆M的参数方程为 (β为参数),利用cos2β+sin2β=1,可得:椭圆M的普通方程为
(2)解:将直线的参数方程C代入圆的方程化为:

由直线l为圆C的切线可知△=0,即 ,解得

∴直线l的参数方程为:

将其代入椭圆M的普通方程得

设A,B对应的参数分别为t1,t2,∴t1+t2=﹣ ,t1t2=

∴|AB|=|t1﹣t2|= =


【解析】(1)由椭圆M的参数方程为 (β为参数),利用cos2β+sin2β=1,即可得出椭圆M的普通方程.(2)将直线的参数方程C代入圆的方程化为: ,由直线l为圆C的切线可知△=0,解得 ,可得直线l的参数方程为: ,将其代入椭圆M的普通方程化为关于t的一元二次方程,利用根与系数的关系代入|AB|=|t1﹣t2|= 即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=x+ 有如下性质:如果常数t>0,那么该函数在 上是减函数,在 上是增函数.
(1)已知f(x)= ,x∈[﹣1,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=﹣x﹣2a,若对任意x1∈[﹣1,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列三个命题
①若“p或q”为假命题,则p,q均为真命题;
②命题“若x≥2且y≥3,则x+y≥5”的逆否命题为假命题;
③在△ABC中,“A>45°”是“sinA> ”的充要条件,
其中正确的命题个数是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U={1,2,3,4},集合A={1,2,x2}与B={1,4}是它的子集,
(1)求UB;
(2)若A∩B=B,求x的值;
(3)若A∪B=U,求x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程为.

(1)若函数时有极值,求的解析式;

(2)函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范围;
(2)当x∈[0,+∞)时,求函数y=g(x)﹣f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{}中,,公比,且的等比中项为2.

(1)求数列{}的通项公式;

(2)设求:数列{}的前项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上不恒为0的函数,且对于任意的实数a,b满足f(2)=2,f(ab)=af(b)+bf(a),an= (n∈N*),bn= (n∈N*),给出下列命题:
①f(0)=f(1);
②f(x)为奇函数;
③数列{an}为等差数列;
④数列{bn}为等比数列.
其中正确的命题是 . (写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)设复数z满足|z|=1,且(3+4i)z为纯虚数,求
(2)已知(2 n的展开式中所有二项式系数之和为64,求展开式的常数项.

查看答案和解析>>

同步练习册答案