精英家教网 > 高中数学 > 题目详情

【题目】已知点是直线与椭圆的一个公共点, 分别为该椭圆的左右焦点,设取得最小值时椭圆为.

(1)求椭圆的标准方程及离心率;

(2)已知为椭圆上关于轴对称的两点, 是椭圆上异于的任意一点,直线分别与轴交于点,试判断是否为定值;如果为定值,求出该定值;如果不是,请说明理由.

【答案】(1) ;(2) .

【解析】试题分析:(1)联立由此利用韦达定理椭圆定义结合已知条件能求出椭圆的方程;(2)由已知求出由此能求出为定值.

试题解析:(1)联立,得

∵直线与椭圆有公共点,

,解得,∴

又由椭圆定义知

故当时, 取得最小值,

此时椭圆的方程为;离心率为

(2)设,且

,∴

同理,得

为定值1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数y=log (x2﹣2x)的单调递增区间是(
A.(﹣∞,0)
B.(﹣∞,1)
C.(2,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},已知A∩B={9},求a的值,并求出A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 . 

(Ⅰ)当时,求函数的极值;

(Ⅱ)当时,讨论函数单调性;

(Ⅲ)是否存在实数,对任意的 ,且,有恒成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对于一切实数x,y均有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0,则当x∈(0, ),不等式f(x)+2<logax恒成立时,实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.
(1)求红队至少两名队员获胜的概率;
(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法正确的是(
①函数f(x)的定义域是R,则“x∈R,f(x+1)>f(x)”是“函数f(x)为增函数”的充要条件
②命题“x∈R,( x>0”的否定是“x∈R,( x≤0”
③命题“若x=2,则x2﹣3x+2=0”的逆否命题是“若x2﹣3x+2≠0,则x≠2”
④p:在△ABC中,若cos2A=cos2B,则A=B;q:y=sinx在第一象限是增函数.则p∧q为真命题.
A.①②③④
B.①③
C.①③④
D.③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x2﹣x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(1)求a,b;
(2)求f(log2x)的最小值及相应 x的值;
(3)若f(log2x)>f(1)且log2f(x)<f(1),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,能推断这个几何体可能是三棱台的是(
A.A1B1=2,AB=3,B1C1=3,BC=4
B.A1Bl=1,AB=2,BlCl=1.5,BC=3,A1C1=2,AC=3
C.AlBl=1,AB=2,B1Cl=1.5,BC=3,AlCl=2,AC=4
D.AB=A1B1 , BC=B1C1 , CA=C1A1

查看答案和解析>>

同步练习册答案