【题目】已知函数f(x)对于一切实数x,y均有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0,则当x∈(0,
),不等式f(x)+2<logax恒成立时,实数a的取值范围是
【答案】[
,1)
【解析】解:∵f(x)对于一切实数x,y均有f(x+y)﹣f(y)=x(x+2y+1)成立,
∴令y=0,x=1代入已知式子f(x+y)﹣f(y)=(x+2y+1)x,
得f(1)﹣f(0)=2,
∵f(1)=0,
∴f(0)=﹣2;
令y=0得f(x)+2=(x+1)x,
∴f(x)=x2+x﹣2.
当x∈(0,
),不等式f(x)+2<logax恒成立时,
即x2+x<logax恒成立,
设g(x)=x2+x,在(0,
)上是增函数,
∴0<g(x)
,
∴要使x2+x<logax恒成立,
则logax≥
在x∈(0,
)恒成立,
若a>1时,不成立.
若0<a<1,则有loga
=
时,a=
,
∴要使logax≥
在x∈(0,
)恒成立,
则
≤a<1,
所以答案是:[
,1)
科目:高中数学 来源: 题型:
【题目】某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下:
![]()
若以上表中频率作为概率,且每天的销售量相互独立.
(1)求5天中该种商品恰好有两天的日销售量为1.5吨的概率;
(2)已知每吨该商品的销售利润为2千元,
表示该种商品某两天销售利润的和(单位:千元),求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(a>b>0)的左、右焦点分别为F1,F2,点M(0,2)是椭圆的一个顶点,△F1MF2是等腰直角三角形.
(1)求椭圆的方程;
(2)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,证明:直线AB过定点
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
经过点
,左右焦点分别为
、
,圆
与直线
相交所得弦长为2.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)设
是椭圆
上不在
轴上的一个动点,
为坐标原点,过点
作
的平行线交椭圆
于
、
两个不同的点.
(1)试探究
的值是否为一个常数?若是,求出这个常数;若不是,请说明理由.
(2)记
的面积为
,
的面积为
,令
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是直线
与椭圆
的一个公共点,
分别为该椭圆的左右焦点,设
取得最小值时椭圆为
.
(1)求椭圆
的标准方程及离心率;
(2)已知
为椭圆
上关于
轴对称的两点,
是椭圆
上异于
的任意一点,直线
分别与
轴交于点
,试判断
是否为定值;如果为定值,求出该定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足f(x)=f′(1)ex﹣1﹣f(0)x+
x2;
(1)求f(x)的解析式及单调区间;
(2)若
,求(a+1)b的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在(0,
)上的函数f(x)的导函数为f′(x),且对于任意的x∈(0,
),都有f′(x)sinx<f(x)cosx,则( )
A.
f(
)>
f(
)
B.f(
)>f(1)
C.
f(
)<f(
)
D.
f(
)<f(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com