【题目】2016年6月22日“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在15—75岁之间的100人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为: .把年龄落在区间自和 内的人分别称为“青少年”和“中老年”.
关注 | 不关注 | 合计 | |
青少年 | 15 | ||
中老年 | |||
合计 | 50 | 50 | 100 |
(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数;
(2)根据已知条件完成下面的列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;
临界值表:
附:参考公式
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中.
【答案】(1)36.43;(2)有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”试题
【解析】试题分析:(Ⅰ)根据频率分布直方图中众数是最高小矩形底边的中点,求出即可;利用中位数两边频率相等,列方程求出中位数的值;
(Ⅱ)依题意完成2×2列联表,计算K2,对照临界值得出结论.
试题解析:
(1)根据频率分布直方图可知样本的众数为40,因为,
设样本的中位数为,则,所以,即样本的中位数约为36.43.
(2)依题意可和,抽取的“青少年”共有人,“中老年”共有人.
完成的列联表如下:
关注 | 不关注 | 合计 | |
青少年 | 15 | 30 | 45 |
中老年 | 35 | 20 | 55 |
合计 | 50 | 50 | 100 |
结合列联表的数据得,因为,
所以有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”.
科目:高中数学 来源: 题型:
【题目】如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD= ,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示是函数在区间上的图象,为了得到这个函数的图像,只要将的图象上所有的点 ( )
A. 向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变
B. 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C. 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
D. 向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|,g(x)=x2+2ax+1(a为正实数),满足f(0)=g(0);
函数F(x)=f(x)+g(x)+b定义域为D.
(1)求a的值;
(2)若存在x0∈D,使F(x0)=x0成立,求实数b的取值范围;
(3)若n为正整数,证明:<4.
(参考数据:lg3=0.3010, =0.1342,=0.0281, =0.0038)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知焦距为2的椭圆W: =1(a>b>0)的左、右焦点分别为A1 , A2 , 上、下顶点分别为B1 , B2 , 点M(x0 , y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1 , MA2 , MB1 , MB2的斜率之积为 .
(1)求椭圆W的标准方程;
(2)如图所示,点A,D是椭圆W上两点,点A与点B关于原点对称,AD⊥AB,点C在x轴上,且AC与x轴垂直,求证:B,C,D三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设斜率为2的直线l,过双曲线的右焦 点,且与双曲线的左、右两支分别相交,则双曲线离心率,e的取值范围是 ( )
A. e> B. e> C. 1<e< D. 1<e<
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆: 的离心率,左顶点为,过点作斜率为的直线交椭圆于点,交轴于点.
(1)求椭圆的方程;
(2)已知为的中点,是否存在定点,对于任意的都有,若存在,求出点的
坐标;若不存在说明理由;
(3)若过点作直线的平行线交椭圆于点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从月份的天中随机挑选了天进行研究,且分别记录了每天昼夜温差与每天颗种子浸泡后的发芽数,得到如下表格:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 |
温差/℃ | |||||
发芽数/颗 |
()从这天中任选天,记发芽的种子数分别为, ,求事件“, 均不小于”的概率.
()从这天中任选天,若选取的是月日与月日的两组数据,请根据这天中的另天的数据,求出关于的线性回归方程.
()若由线性回归方程得到的估计数据与所选出的两组检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问()中所得的线性回归方程是否可靠?
(参考公式: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com