【题目】以下关于圆锥曲线的命题中:
①双曲线
与椭圆
有相同焦点;
②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;
③设
、
为两个定点,
为常数,若
,则动点
的轨迹为双曲线;
④过抛物线
的焦点作直线与抛物线相交于
、
,则使它们的横坐标之和等于5的直线有且只有两条;
以上命题正确的个数为( )
A.1B.2C.3D.4
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程是
为参数),曲线
的参数方程是
为参数),以
为极点,
轴的非负半轴为极轴建立极坐标系.
(1)求直线
和曲线
的极坐标方程;
(2)已知射线
与曲线
交于
两点,射线
与直线
交于
点,若
的面积为1,求
的值和弦长
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“克拉茨猜想”又称“
猜想”,是德国数学家洛萨克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数
,如果
是偶数,就将它减半;如果
为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.己知正整数
经过6次运算后得到1,则
的值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为
(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为
平方米,且高度不低于
米.记防洪堤横断面的腰长为
(米),外周长(梯形的上底线段
与两腰长的和)为
(米).
![]()
⑴求
关于
的函数关系式,并指出其定义域;
⑵要使防洪堤横断面的外周长不超过
米,则其腰长
应在什么范围内?
⑶当防洪堤的腰长
为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了了解初三学生的体育锻炼情况,随机抽取了40名学生对一周的体育锻炼时间长(单位:小时)进行统计,并将数据整理如下:
时间长 性别 |
|
|
|
|
|
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)采用样本估计总体的方式,试估计该校的所有学生中一周的体育锻炼时间长为
的概率;
(2)若将一周的体育锻炼时间长不低于3小时的评定为“体育锻炼合格者”,否则为“不合格者”,根据以上数据完成下面的
列联表,并据此判断能否有95%的把握认为体育锻炼与性别有关?附:
,其中
.
| 0.10 | 0.05 | 0.025 | 0.01 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面四个命题:其中所有正确命题的序号是_________.
①函数
的最小正周期为
;
②在
中,若
,则
一定是钝角三角形;
③函数
且
的图象必经过点(3,2);
④若命题“
”是假命题,则实数
的取值范围为
;
⑤
的图象向左平移
个单位,所得图象关于
轴对称.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com