【题目】从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100个零件作为样本,测量其直径后,整理得到如表:
直径/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的频率):①;②;③.评判规则为:若同时满足上述三个不等式,则设备性能等级为甲;仅满足其中两个,则设备性能等级为乙;若仅满足其中一个,则设备性能等级为丙;若全部不满足,则设备性能等级为丁.试判断设备的性能等级.
(2)将直径小于等于或直径大于的零件认为是次品.
(i)从设备的生产流水线上任意抽取2个零件,计算其中次品个数的数学期望;
(ii)从样本中任意抽取2个零件,计算其中次品个数的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,设椭圆的左焦点为,短轴的两个端点分别为,且,点在上.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与椭圆和圆分别相切于,两点,当面积取得最大值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(5分)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( )
A. 1升 B. 升 C. 升 D. 升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下关于圆锥曲线的命题中:
①双曲线与椭圆有相同焦点;
②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;
③设、为两个定点,为常数,若,则动点的轨迹为双曲线;
④过抛物线的焦点作直线与抛物线相交于、,则使它们的横坐标之和等于5的直线有且只有两条;
以上命题正确的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点为正方形的中心,为正三角形,平面平面,是线段的中点,则( )
A.直线,是相交直线
B.直线与直线所成角等于
C.直线与直线所成角等于直线与直线所成角
D.直线与平面所成角小于直线平面所成角
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中不正确的个数是( )
①若直线上有无数个点不在平面内,则;
②和两条异面直线都相交的两条直线异面;
③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;
④一条直线和两条异面直线都相交,则它们可以确定两个平面.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列满足:,,.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论正确的是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com