【题目】如图,平行四边形ABCD中,CD=1,∠BCD=60°,BD⊥CD,正方形ADEF,且面ADEF⊥面ABCD. ![]()
(Ⅰ)求证:BD⊥平面ECD.
(Ⅱ)求D点到面CEB的距离.
【答案】证明:(I)∵四边形ADEF为正方形, ∴ED⊥AD,
又∵平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,
∴ED⊥平面ABCD,∴ED⊥BD.
又∵BD⊥CD,ED∩CD=D,
∴BD⊥平面ECD.
( II)解:∵CD=1,∠BCD=60°,BD⊥CD,
又∵正方形ADEF,∴CB=2,CE=
,
,
∴
,∴
,
Rt△BCD的面积等于 S△BCD=
1
=
,
由得( I)ED⊥平面ABCD,∴点E到平面BCD的距离为ED=2,设点D到到面CEB的距离为h,
∴
=
,∴h=
,
即点D到到面CEB的距离为
.
【解析】( I)由条件证明ED⊥BD,再根据BD⊥CD,利用直线和平面垂直的判定定理证得BD⊥平面ECD. II)先求△CBE的面积,Rt△BCD的面积,设点D到到面CEB的距离为h,利用等体积法求点D到平面CBE的距离h的值.
【考点精析】本题主要考查了直线与平面垂直的判定的相关知识点,需要掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点. ![]()
(1)求证:PA∥平面BMD;
(2)求证:AD⊥PB;
(3)若AB=PD=2,求点A到平面BMD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx,g(x)=x2 . (Ⅰ)求函数h(x)=f(x)﹣x+1的最大值;
(Ⅱ)对于任意x1 , x2∈(0,+∞),且x1<x2 , 是否存在实数m,使mg(x1)﹣mg(x2)﹣x2f(x2)+x1f(x1)恒为正数?若存在,求出m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则
”,若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则
=( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题说法正确的是( )
A.命题p:“?x∈R,sinx+cosx=
”,则?p是真命题
B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件
C.命题“?x∈R,使得x2+x+1<0“的否定是:“?x∈R,x2+x+1<0”
D.“a>l”是“y=logax(a>0且a≠1)在(0,+∞)上为增函数”的充要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥E﹣ABCD中,底面ABCD为正方形,EC⊥平面ABCD,AB=
,CE=1,G为AC与BD交点,F为EG中点, (Ⅰ)求证:CF⊥平面BDE;
(Ⅱ)求二面角A﹣BE﹣D的大小.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】极坐标系与直角坐标系xoy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为
(t为参数),曲线C的极坐标方程为ρsin2θ=8cosθ. (I)求C的直角坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求弦长|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
﹣
的定义域为集合A,B={x∈Z|0<x<10},C={x∈R|2a+3<x<a+5}.
(1)求A,(RA)∩B;
(2)若A∩C=C,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com