精英家教网 > 高中数学 > 题目详情

【题目】极坐标系与直角坐标系xoy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为ρsin2θ=8cosθ. (I)求C的直角坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求弦长|AB|.

【答案】解:(I)由曲线C的极坐标方程为ρsin2θ=8cosθ,即ρ2sin2θ=8ρcosθ,化为y2=8x. (II)把直线l的参数方程为 (t为参数)代入y2=8x化为3t2﹣16t﹣64=0.
解得t1=8,t2=
∴弦长|AB|=|t1﹣t2|= =
【解析】(I)利用 即可得出直角坐标方程.(II)把直线l的参数方程为 (t为参数)代入y2=8x化为3t2﹣16t﹣64=0.利用弦长|AB|=|t1﹣t2|即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知非空集合A,B满足以下两个条件.
(ⅰ)A∪B={1,2,3,4,5,6},A∩B=
(ⅱ)A的元素个数不是A中的元素,B的元素个数不是B中的元素,则有序集合对(A,B)的个数为( )
A.10
B.12
C.14
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,CD=1,∠BCD=60°,BD⊥CD,正方形ADEF,且面ADEF⊥面ABCD.
(Ⅰ)求证:BD⊥平面ECD.
(Ⅱ)求D点到面CEB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列说法: ①函数y=﹣cos2x的最小正周期是π;
②终边在y轴上的角的集合是{α|α= ,k∈Z};
③在同一直角坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;
④函数f(x)=4sin(2x+ )(x∈R)可以改写为y=4cos(2x﹣ );
⑤函数y=sin(x﹣ )在[0,π]上是减函数.
其中,正确的说法是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一种机器的固定成本为5000元,且每生产100部,需要加大投入2500元.对销售市场进行调查后得知,市场对此产品的需求量为每年500部,已知销售收入函数为 ,其中x是产品售出的数量0≤x≤500.
(1)若为x年产量,y表示利润,求y=f(x)的解析式
(2)当年产量为何值时,工厂的年利润最大?其最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知
(1)求f(x)的周期及其图象的对称中心;
(2)△ABC中,角A、B、C所对的边分别是a、b、c,满足(2a﹣c)cosB=bcosC,求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集为R,A={x|2x2﹣9x+4≤0},B={x|x2+a<0}.
(1)当a=﹣9时,求A∩B,(RA)∪B;
(2)当a<0时,若(RA)∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为奇函数.
(1)若函数f(x)在区间 上为单调函数,求m的取值范围;
(2)若函数f(x)在区间[1,k]上的最小值为3k,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)= (a>0且a≠1)
(1)若a=2,解不等式f(x)≤5;
(2)若函数f(x)的值域是[4,+∞),求实数a的取值范围.

查看答案和解析>>

同步练习册答案