精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)对任意的实数满足:$f(x+3)=-\frac{1}{f(x)}$,且当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2015)=336.

分析 由已知可得函数正确为6,再由已知求出f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,然后利用周期概念得答案.

解答 解:由$f(x+3)=-\frac{1}{f(x)}$,得f(x+3+3)=-$\frac{1}{f(x+3)}$=$-\frac{1}{-\frac{1}{f(x)}}=f(x)$,即f(x+6)=f(x),
∴函数f(x)是周期为6的周期函数,
又当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x,
∴f(1)=1,f(2)=2,f(3)=f(-3)=-(-3+2)2=-1,f(4)=f(-2)=-(-2+2)2=0,f(5)=f(-1)=-1,f(6)=f(0)=0.
则f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,
则f(1)+f(2)+f(3)+…+f(2015)=335×1+f(1)+f(2)+f(3)+f(4)+f(5)=336.
故答案为:336.

点评 本题考查函数周期性的求法,由已知求出函数周期是解答该题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图是某几何体的三视图,图中圆的半径均为1,且俯视图中两条半径互相垂直,则该几何体的体积为(  )
A.2+πB.$\frac{4}{3}$πC.$\frac{3}{2}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,若$A=\frac{π}{3},tanB=\frac{1}{2},AB=2\sqrt{3}+1$,则BC=$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将函数f(x)=2sin2x的图象向左平移$\frac{π}{6}$单位,再向上平移1个单位,得到函数y=g(x)的图象,对任意a∈R,y=g(x)在区间[a,a+10π]上零点个数的所有可能值20或者21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.我国是严重缺水的国家之一,某市为了节约生活用水,计划在本市试行居民生活用水定额管理.为了较为合理地确定居民日常用水的标准,有关部门抽样调查了100位居民.如表是这100位居民月均用水量(单位:吨)的频率分布表,根据如表解答下列问题:
(1)求表中a,b的值;
分组频数频率
[0,1)100.10
[1,2)a0.20
[2,3)300.30
[3,4)20b
[4,5)100.10
[5,6)100.10
合计1001.00
(2)根据直方图估计该市每位居民月均用水量的众数、中位数、平均数.(在试卷上将下面的频率分布直方图补充完整).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.圆x2+y2=4经过伸缩变换$\left\{\begin{array}{l}x′=2x\\ y′=3y\end{array}\right.$后的图形的方程为$\frac{x^2}{16}+\frac{y^2}{36}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不论a为何值,直线ax+(2-a)y+1=0恒过定点为(  )
A.(0,0)B.(0,1)C.$({\frac{1}{2},-\frac{1}{2}})$D.$({-\frac{1}{2},-\frac{1}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知|z|=1,则$|{z-1+\sqrt{3}i}|$的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线2x-y-5=0且与圆x2+y2=5的位置关系是(  )
A..相切B..相离C.相交D.都有可能

查看答案和解析>>

同步练习册答案