分析 利用余弦定理表示出cosA,分类讨论A为钝角,锐角以及直角,判断cosA的正负,即可确定出方程的解.
解答 解:∵a为△ABC的最大边,即A为最大角,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$,
当A为钝角时,cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$<0,即b2+c2-a2<0,
方程整理得:(a-c)x2+2bx+a+c=0,
∵△=4b2-4(a+c)(a-c)=4b2-4a2+4c2=4(b2+c2-a2)<0,
∴方程无解;
当A为锐角时,cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$>0,即b2+c2-a2>0,
方程整理得:(a-c)x2+2bx+a+c=0,
∵△=4b2-4(a+c)(a-c)=4b2-4a2+4c2=4(b2+c2-a2)>0,
∴方程解为x=$\frac{-2b±2\sqrt{{b}^{2}+{c}^{2}-{a}^{2}}}{2(a-c)}$=$\frac{-b±\sqrt{{b}^{2}+{c}^{2}-{a}^{2}}}{a-c}$;
当A为直角时,cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=0,即b2+c2-a2=0,
方程整理得:(a-c)x2+2bx+a+c=0,
∵△=4b2-4(a+c)(a-c)=4b2-4a2+4c2=4(b2+c2-a2)=0,
∴方程解为x1=x2=$\frac{-b}{a-c}$.
点评 此题考查了余弦定理,以及根的判别式,熟练掌握余弦定理是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com