精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在R上的函数,f(0)=2,且对任意实数x,y总有f(-x)=f(x),f(x+y)=f(x)+f(y)+2xy,求f(x)的解析式.
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:令y=-x,代入f(x+y)=f(x)+f(y)+2xy,利用f(-x)=f(x),即可得出函数的解析式.
解答: 解:令y=-x,
∴f(x-x)=f(x)+f(-x)-2x2
∴f(0)=2f(x)-2x2
∴f(x)=x2+1.
点评:考察抽象函数及其应用.考查函数的奇偶性,解决本题的关键在于令y=-x,本题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=
ex
1+ax
,其中a为正实数.
(Ⅰ)当a=
4
3
时,求f(x)的极值点;
(Ⅱ)若f(x)为R上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,PA、PB、PC两两垂直,过P点作平面ABC的垂线,垂足为G,证明:G为△ABC的垂心.

查看答案和解析>>

科目:高中数学 来源: 题型:

性格色彩学创始人乐嘉是江苏电视台当红节目“非诚勿扰”的特约嘉宾,他的点评视角独特,语言犀利,给观众留下了深刻的印象,某报社为了了解观众对乐嘉的喜爱程度,随机调查了观看了该节目的140名观众,得到如下的列联表:(单位:名)
总计
喜爱4060100
不喜爱202040
总计6080140
(Ⅰ)从这60名男观众中按对乐嘉是否喜爱采取分层抽样,抽取一个容量为6的样本,问样本中喜爱与不喜爱的观众各有多少名?
(Ⅱ)根据以上列联表,问能否在犯错误的概率不超过0.025的前提下认为观众性别与喜爱乐嘉有关.(精确到0.001)
(Ⅲ)从(Ⅰ)中的6名男性观众中随机选取两名作跟踪调查,求选到的两名观众都喜爱乐嘉的概率.
附:
p(k2≥k00.100.050.0250.0100.005
k02.7053.8415.0246.6357.879
k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
4
x
,x∈(0,1],求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

掷一枚质地均匀的骰子,事件“朝上出现奇数点”记为A,事件“朝上的点数不大于3”记为B.
(1)求P(A)和P(
.
B
);
(2)求P(A∪
.
B
).

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,A={x|2<x<6},B={x|3x-7≥8-2x},C={x|a-2<x<2a}.求:
(1)A∩B;A∪B;(∁UA)∩B;
(2)若A∪C=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设f(x)=kx-
k
x
-21nx.
(1)若f'(2)=
1
4
,求f(x)在点(2,f(2))处的切线方程;
(2)若f(x)在区间[2,+∞)内为单调递增函数,求k的取值范围;
(3)若k=1时,求证:n(n+1)1n(1+
1
n
)<n+
1
2
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2(-x2+5x-6)的递增区间是
 

查看答案和解析>>

同步练习册答案