精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面为直角梯形,AD//BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC=2a,M、N分别为PC、PB的中点。
(1)求证:MN//平面PAD;
(2)求证:PB⊥DM;
(3)求四棱锥P-ADMN的体积。
证明:(1)因为M、N分别为PC、PB的中点,所以MN//BC,且
又因为AD//BC,所以MN//AD,
又AD平面PAD,MN平面PAD,
所以MN//平面PAD。
(2)因为AN为等腰DABP底边PB上的中线,所以AN⊥PB,
因为PA⊥平面ABCD,AD平面ABCD,所以AD⊥PA,
又因为AD⊥AB,且AB∩AP=A,所以AD⊥平面PAB,
又PB平面PAB,所以AD⊥PB,
因为AN⊥PB,AD⊥PB,且AN∩AD=A,
所以PB⊥平面ADMN,
又DM平面ADMN,所以PB⊥DM。
(3)解:由(1)和(2)可得四边形ADMN为直角梯形,
且∠DAN=90°,AD=2a,
所以
由(2)PB⊥平面ADMN,得PN为四棱锥P-ADMN的高,且
所以,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案