精英家教网 > 高中数学 > 题目详情
14.函数f(x)为(-∞,+∞)上的奇函数,则f(0)=0.

分析 直接利用奇函数的定义求解即可.

解答 解:函数f(x)为(-∞,+∞)上的奇函数,可得f(-x)=-f(x),
可得f(0)=-f(0),即f(0)=0.
故答案为:0.

点评 本题考查奇函数的简单性质,奇函数的定义的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图所示,则(  )
A.ω=$\frac{π}{4}$,φ=$\frac{3π}{4}$B.ω=$\frac{π}{4}$,φ=$\frac{π}{4}$C.ω=$\frac{π}{2}$,φ=$\frac{π}{4}$D.ω=$\frac{π}{3}$,φ=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)(万元)满足R(x)=$\left\{\begin{array}{l}{-0.4{x}^{2}+3.4x+0.8,(0≤x≤5)}\\{9,(x>5)}\end{array}\right.$,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本);
(2)要使甲厂有盈利,求产量x的范围;
(3)甲厂生产多少台产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某球的体积与表面积的数值相等,则球的半径是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三个不等式①x2-4x+3<0,②x2-6x+8<0,③2x2-9x+m<0.要使同时满足①②的所有x的值满足③,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)在定义域(0,+∞)是单调函数,当x∈(0,+∞)时,都有f[f(x)-$\frac{1}{x}$]=2,则f($\frac{1}{5}$)的值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设点A(3,y)(y≥3),B(x,x2)(0≤x≤2),则直线AB倾斜角的取值范围是[0,$\frac{π}{2}$)∪[$\frac{3}{4}π$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\left\{\begin{array}{l}{4-{x}^{2},(x>0)}\\{2,(x=0)}\\{1-2x,(x<0)}\end{array}\right.$.
(Ⅰ)画出函数f(x)图象;
(Ⅱ)求f(-a2-1)(a∈R),f(f(3))的值;
(Ⅲ)当-4≤x<3时,求f(x)取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.f(x)为奇函数,且x>0时,f(x)=3x+5,则x<0时,f(x)=3x-5.

查看答案和解析>>

同步练习册答案