°ÑÕýżÊýÁÐ{2n}ÖеÄÊý°´¡°ÉÏСÏ´ó£¬×óСÓÒ´ó¡±µÄÔ­ÔòÅųÉÈçͼ¡°Èý½ÇÐΡ±ËùʾµÄÊý±í£¬Éèaij£¨i£¬j¡ÊN*£©ÊÇλÓÚÕâ¸öÈý½ÇÐÎÊý±íÖдÓÉÏÍùÏÂÊýµÚiÐУ¬´Ó×óÍùÓÒÊýµÚj¸öÊý£®
£¨1£©Èôamn=2010£¬Çóm£¬nµÄÖµ£®
£¨2£©ÒÑÖªº¯Êýf£¨x£©µÄ·´º¯ÊýΪf-1£¨x£©=n+125n•x3£¨x£¾0£¬n¡ÊN*£©£¬Èô¼ÇÈý½ÇÐÎÊý±íÖдÓÉÏÍùÏÂÊýµÚnÐи÷ÊýµÄºÍΪbn£®¢ÙÇóÊýÁÐ{f£¨bn£©}µÄÇ°nÏîºÍSn£»¢ÚÁîCn=
52n
5n-1
• f(bn) £¬{Cn}
µÄÇ°nÏîÖ®»ýΪTn£¨n¡ÊN*£©£¬ÇóÖ¤£ºTn£¼
4
3
•n!
£®
·ÖÎö£º£¨1£©Êý±íÖÐÊÇÁ¬ÐøµÄżÊý£¬amnÊǵÚmÐеĵÚn¸öÊý£¬n¡Üm£¬ËùÒÔÏȼÆËãÇ°m-1Ðй²ÓÐ1+2+3+¡­+m-1=
m(m-1)
2
¸öÊý£¬ÔÙ¼ÓÉÏnµÈÓÚ1005£¬Çó³öm£¬nµÄÖµ£®
£¨2£©¢ÙÏȸù¾Ýf£¨x£©µÄ·´º¯Êý½âÎöʽÇó³öf£¨x£©µÄ½âÎöʽ£¬ÀûÓõȲîÊýÁеÄÇóºÍ¹«Ê½£¬Çó³öÇ°n-1Ðй²ÓжàÉÙ¸öżÊý£¬ÕÒµ½µÚnÐеĵÚÒ»¸öÊý£¬ÔÙÓõȲîÊýÁеÄÇóºÍ¹«Ê½Çó³öbn£¬´úÈëf£¨x£©£¬ÀûÓôíλÏà¼õÇóºÍ¼´¿É£®
¢Ú»¯¼òTn£¬ÔÙÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷Tn£¼
4
3
•n!
³ÉÁ¢¼´¿É£®Êýѧ¹éÄÉ·¨µÄ²½Ö裬ÏÈÑéÖ¤nÈ¡µÚÒ»¸öÊýʱÃüÌâ³ÉÁ¢£¬¼ÙÉèn=kʱÃüÌâ³ÉÁ¢£¬ÔÙÖ¤Ã÷n=k+1ʱÃüÌâÒ²³ÉÁ¢£®
½â´ð£º½â£º£¨1£©Òò2010ÊǵÚ1005¸öżÊý£¬¶øÇ°m-1Ðй²ÓÐ1+2+¡­+n=
m(m-1)
2
¸öżÊý£¬ÓÖ¡ßn¡Üm£¬¹Ê2010λÓÚµÚ45ÐеÚ15¸öżÊý£¬¹Êm=45£¬n=15
£¨2£©¢ÙÓÉy=n+125n•x3µÃ£ºx=
3y-n
5n
£¬f£¨x£©=ÉèT±íʾǰn¸öżÊýºÍ£¬Ôò
bn=T
n(n+1)
2
-T
n(n-1)
2
=
n(n+1)
2
[2+n(n+1)]
2
-
n(n-1)
2
[2+n(n-1)]
2
=n3+n
¹Êf£¨bn£©=
n
5n
£¬Sn=
1
5
+
2
52
+
3
53
+¡­+
n
5n
£¬
1
5
Sn=
1
52
+
2
53
+¡­+
n
5n+1

4
5
Sn=
1
5
+
1
52
+
1
53
+¡­+
1
5n
+
1
5n+1
£¬
¡àSn=
5
16
-
4n+5
16¡Á5n

¢ÚÒ×ÖªCn=
52n
5n-1
• f(bn)
=
52n
5n-1
• 
n
5n
=
n5n
5n-1

¡àTn=
51
5n-1
52
5n-1
¡­
5n
5n-1
£¨n!£©
ÒªÖ¤Tn£¼
4
3
•n!
Ö»ÐèÖ¤Ã÷=
51
5n-1
52
5n-1
¡­
5n
5n-1
£¼
4
3
£¬
ÓÖÖ»ÐèÖ¤Ã÷
5-1
5
52-1
52
¡­ 
5n-1
5n
=£¨1-
1
5
£©£¨1-
1
52
£©¡­£¨1-
1
5n
£©£¾
3
4
£¬
ÏÂÏÈÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º£¨1-
1
5
£©£¨1-
1
52
£©¡­£¨1-
1
5n
£©¡Ý1-£¨
1
5
+
1
52
+¡­+
1
5n
£©
£¨¢ñ£©µ±n=1ʱ£¬1-
1
5
=
4
5
¡Ý1-
1
5
¹Ên=1³ÉÁ¢£»
£¨¢ò£©¼ÙÉèn=kʱ£¬=£¨1-
1
5
£©£¨1-
1
52
£©¡­£¨1-
1
5k
£©£¾1-£¨
1
5
+
1
52
+¡­+
1
5k
£©£¬
Ôòn=k+1ʱ£¬=£¨1-
1
5
£©£¨1-
1
52
£©¡­£¨1-
1
5k
£©£¨1-
1
5k+1
£©£¾1-£¨
1
5
+
1
52
+¡­+
1
5k
£©£¨1-
1
5k+1
£©£¬
=1-£¨
1
5
+
1
52
+¡­+
1
5k
+
1
5k+1
£©+£¨
1
5
+
1
52
+¡­+
1
5k
£©
1
5k+1
£¾1-£¨
1
5
+
1
52
+¡­+
1
5k
+
1
5k+1
£©£¬
¹Ên=k+1Ò²³ÉÁ¢£®
×ۺϣ¨¢ñ£©£¬£¨¢ò£©Öª£º£º£¨1-
1
5
£©£¨1-
1
52
£©¡­£¨1-
1
5n
£©¡Ý1-£¨
1
5
+
1
52
+¡­+
1
5n
£©=1-
1
5
(1-
1
5n
)
1-
1
5

=
3
4
+
1
4
1
5n
£¾
3
4

¹ÊÔ­²»µÈʽ³ÉÁ¢£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˺¯ÊýÓëÊýÁÐ×ÛºÏÓ¦ÓÃÀ´ÇóÊýÁеĺͣ¬ÒÔ¼°Êýѧ¹éÄÉ·¨Ö¤Ã÷²»µÈʽ³ÉÁ¢£¬×¢Òâ½âÌâ²½ÖèµÄÊéд£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009-2010ѧÄêºþ±±Ê¡Ð¢¸Ð¸ßÖиßÈý£¨ÉÏ£©9ÔÂ×ۺϲâÊÔÊýѧÊÔ¾í2£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

°ÑÕýżÊýÁÐ{2n}ÖеÄÊý°´¡°ÉÏСÏ´ó£¬×óСÓÒ´ó¡±µÄÔ­ÔòÅųÉÈçͼ¡°Èý½ÇÐΡ±ËùʾµÄÊý±í£¬Éèaij£¨i£¬j¡ÊN*£©ÊÇλÓÚÕâ¸öÈý½ÇÐÎÊý±íÖдÓÉÏÍùÏÂÊýµÚiÐУ¬´Ó×óÍùÓÒÊýµÚj¸öÊý£®
£¨1£©Èôamn=2010£¬Çóm£¬nµÄÖµ£®
£¨2£©ÒÑÖªº¯Êýf£¨x£©µÄ·´º¯ÊýΪf-1£¨x£©=n+125n•x3£¨x£¾0£¬n¡ÊN*£©£¬Èô¼ÇÈý½ÇÐÎÊý±íÖдÓÉÏÍùÏÂÊýµÚnÐи÷ÊýµÄºÍΪbn£®¢ÙÇóÊýÁÐ{f£¨bn£©}µÄÇ°nÏîºÍSn£»¢ÚÁîµÄÇ°nÏîÖ®»ýΪTn£¨n¡ÊN*£©£¬ÇóÖ¤£º£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

°ÑÕýżÊýÁÐ{2n}ÖеÄÊý°´ÉÏСÏ´ó,×óСÓÒ´óµÄ˳ÐòÅÅÐò³ÉÏÂͼ¡°Èý½ÇÐΡ±ËùʾµÄÊý±í.ÉèamnÊÇλÓÚÕâ¸öÈý½ÇÐÎÊý±íÖдÓÉϵ½ÏµĵÚmÐÐ,´Ó×óµ½ÓҵĵÚnÁеÄÊý.

                  2

                  4  6

                  8  10  12

                  14  16  18  20

                  22  24  26  28  30

                  ¡­

(1)Èô¼ÇÈý½ÇÐÎÊý±íÖдÓÉÏÍùÏÂÊýµÚnÐи÷Êý×ÖÖ®ºÍΪbn,ÇóÊýÁÐ{bn}µÄͨÏʽ.

(2)¼Çcn-1=(n¡Ý2),ÇóÊýÁÐ{cn}µÄÇ°nÏîºÍSn.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

°ÑÕýżÊýÁÐ{2n}ÖеÄÊý°´ÉÏСÏ´ó,×óСÓÒ´óµÄ˳ÐòÅÅÐò³ÉÏÂͼ¡°Èý½ÇÐΡ±ËùʾµÄÊý±í.ÉèamnÊÇλÓÚÕâ¸öÈý½ÇÐÎÊý±íÖдÓÉϵ½ÏµĵÚmÐÐ,´Ó×óµ½ÓҵĵÚnÁеÄÊý.

2

4  6

8  10  12

14  16  18  20

22  24  26  28  30

¡­

(1)Èô¼ÇÈý½ÇÐÎÊý±íÖдÓÉÏÍùÏÂÊýµÚnÐи÷Êý×ÖÖ®ºÍΪbn,ÇóÊýÁÐ{bn}µÄͨÏʽ;

(2)¼Çcn-1=(n¡Ý2),ÊýÁÐ{cn}µÄÇ°nÏîºÍΪSn,ÇóSnµÄÖµ.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸