精英家教网 > 高中数学 > 题目详情
15.利用单位圆写出符合下列条件的角x的范围.
(1)sinx<-$\frac{\sqrt{2}}{2}$;
(2)|cosx|≤$\frac{1}{2}$;
(3)sinx≥-cosx.

分析 由已知条件作出单位圆,利用单位圆求出在[0,2π)内满足条件的x有范围,再利用终边相同的角的概念,能求出符合条件的角x的范围.

解答 解:(1)∵sinx<-$\frac{\sqrt{2}}{2}$,
∴作出单位图,如下图:

结合单位圆,得$\frac{5π}{4}<x<\frac{7π}{4}$,
∴符合sinx<-$\frac{\sqrt{2}}{2}$的角x的范围为{x|$\frac{5π}{4}+2kπ<x<\frac{7π}{4}+2kπ$,k∈Z}.
(2)∵|cosx|≤$\frac{1}{2}$,即-$\frac{1}{2}≤cosx≤\frac{1}{2}$,
∴作出单位图,如下图:

结合单位圆,得$\frac{π}{3}≤α≤\frac{2π}{3}$或$\frac{4π}{3}≤α≤\frac{5π}{3}$,
∴符合|cosx|≤$\frac{1}{2}$的角x的范围为{x|$kπ+\frac{π}{3}≤α≤kπ+\frac{2π}{3}$,k∈Z}.
(3)∵sinx≥-cosx,
∴作出单位图,如下图:

结合单位圆,得0≤x≤$\frac{3π}{4}$或$\frac{7π}{4}$≤x<2π,
∴符合sinx≥-cosx的角x的范围为{x|$2kπ≤x≤\frac{3π}{4}+2kπ$,或$\frac{7π}{4}+2kπ≤x<2kπ+2π$,k∈Z}.

点评 本题考查满足条件的角的取值范围的求法,是基础题,解题时要认真审题,注意单位圆的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设f(x)=log22x+5log2x+1,若f(α)=f(β)=0,且α≠β,求αβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等差数列{an}的前n项和为Sn,a23+a2=2014,则a20133+a2013=-2014,则S2014=(  )
A.2014B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sinωx(ω>0)在[-$\frac{π}{6}$,0]上的最小值为$-\sqrt{3}$,当把f(x)的图象上所有的点向右平移φ(0<φ<$\frac{π}{2}$)个单位后,得到的函数g(x)的图象关于直线x=$\frac{7π}{12}$对称.
(1)求函数g(x)的解析式;
(2)在△ABC中,角A,B,C对应的边分别是a,b,c,若函数g(x)在y轴右侧的第一个零点恰为A,a=5,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AD⊥AB,BC∥AD,AD=2AB=2BC=2.求证:PC⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求sin1140°•cos750°-cos1485°•sin750°+sin780°的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\frac{lnx}{{x}^{2}+1}$,则f′(1)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在正四棱锥S-ABCD中,底面边长为6cm,侧棱长为3$\sqrt{5}$cm.
(1)求正四棱锥S-ABCD的体积;
(2)求二面角S-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设如图是某几何体的三视图,求该几何体的体积和表面积.

查看答案和解析>>

同步练习册答案