精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=2sinωx(ω>0)在[-$\frac{π}{6}$,0]上的最小值为$-\sqrt{3}$,当把f(x)的图象上所有的点向右平移φ(0<φ<$\frac{π}{2}$)个单位后,得到的函数g(x)的图象关于直线x=$\frac{7π}{12}$对称.
(1)求函数g(x)的解析式;
(2)在△ABC中,角A,B,C对应的边分别是a,b,c,若函数g(x)在y轴右侧的第一个零点恰为A,a=5,求△ABC的面积S的最大值.

分析 (1)由题意可得2sin(-$\frac{π}{6}$ω)=-$\sqrt{3}$,解得ω,利用平移变换规律可得g(x)=2sin(2x-2φ),利用正弦函数的对称性可得2($\frac{7π}{12}$-φ)=kπ+$\frac{π}{2}$,k∈Z,结合范围0<φ<$\frac{π}{2}$,可求φ,即可得解函数g(x)的解析式.
(2)由题意可得2sin(2A-$\frac{2π}{3}$)=0,解得2A-$\frac{2π}{3}$=kπ,k∈Z,由题意可解得A,由余弦定理可得25≥bc,利用三角形的面积公式即可得解.

解答 解:(1)∵函数f(x)=2sinωx(ω>0)在[-$\frac{π}{6}$,0]上的最小值为$-\sqrt{3}$,
∴2sin(-$\frac{π}{6}$ω)=-$\sqrt{3}$,解得ω=2,
把f(x)的图象上所有的点向右平移φ(0<φ<$\frac{π}{2}$)个单位后,
得到的函数g(x)=2sin[2(x-φ)]=2sin(2x-2φ),
∵函数g(x)的图象关于直线x=$\frac{7π}{12}$对称,
∴2($\frac{7π}{12}$-φ)=kπ+$\frac{π}{2}$,k∈Z,解得:φ=$\frac{π}{3}-kπ$,k∈Z,
∴由0<φ<$\frac{π}{2}$,可得:φ=$\frac{π}{3}$.
∴函数g(x)的解析式为:g(x)=2sin[2(x-$\frac{π}{3}$)]=2sin(2x-$\frac{2π}{3}$).
(2)∵函数g(x)在y轴右侧的第一个零点恰为A,
∴由2sin(2A-$\frac{2π}{3}$)=0,解得2A-$\frac{2π}{3}$=kπ,k∈Z,可得:A=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,令k=0,可得A=$\frac{π}{3}$.
∵a=5,
∴由余弦定理可得:25=b2+c2-2bccosA=b2+c2-bc≥2bc-bc=bc,
∴${S}_{△ABC}=\frac{1}{2}bcsinA$$≤\frac{1}{2}×25×\frac{\sqrt{3}}{2}$=$\frac{25\sqrt{3}}{4}$.
故△ABC的面积S的最大值为$\frac{25\sqrt{3}}{4}$.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质,余弦定理,三角形面积公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,修建一个面积为2$\sqrt{3}$m2的三角形花园,已知ABC中,∠A=120°,AC=2m,则AB的长为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.斜四棱柱的侧面是矩形的面最多有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在直角三棱柱ABC-A1B1C1中,若BC⊥AC,∠BAC=$\frac{π}{3}$,AC=4,AA1=4,M为AA1中点,点P为BM中点,Q在线段CA1上,且A1Q=3QC,则PQ的长度为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设偶函数f(x)在区间(-∞,0]上单调递增,且满足f(3a-2)<f(2a+1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,△OBC的边BC所在的直线方程是l:x-y-3=0
(1)如果一束光线从原点O射出,经直线l反射后,经过点(3,3),求反射后光线所在直线的方程:
(2)如果在△OBC中,∠BOC为直角,求△OBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.利用单位圆写出符合下列条件的角x的范围.
(1)sinx<-$\frac{\sqrt{2}}{2}$;
(2)|cosx|≤$\frac{1}{2}$;
(3)sinx≥-cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l1:y=2x+1,${l_2}:y=-\frac{1}{2}x-2$则两条直线的位置关系为(  )
A.平行B.重合C.相交但不垂直D.垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a>0,b>0,且$\frac{3}{a}$+$\frac{1}{b}$≥$\frac{m}{a+3b}$恒成立,求m的最大值.

查看答案和解析>>

同步练习册答案