精英家教网 > 高中数学 > 题目详情
9.已知a∈R,b∈R,则“a>b”是“$\frac{1}{a}<\frac{1}{b}$”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

分析 根据充分必要条件的定义分别判断其充分性和必要性即可.

解答 解:令a=1,b=-1,则a>b,而$\frac{1}{a}$>$\frac{1}{b}$,不是充分条件,
若$\frac{1}{a}<\frac{1}{b}$,即$\frac{b-a}{ab}$<0,
∴$\left\{\begin{array}{l}{b-a<0}\\{ab>0}\end{array}\right.$或$\left\{\begin{array}{l}{b-a>0}\\{ab<0}\end{array}\right.$,
即a,b同号时:a>b,a,b异号时:a<b,
不是必要条件,
故选:D.

点评 本题考查了充分必要条件,考查不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.mn>0是$\frac{x^2}{m}+\frac{y^2}{n}$=1表示椭圆的必要不充分条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知平面向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,3).若向量$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow{b}$),则实数λ的值是-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数h(x)=ax2+bx+2,其导函数y=h′(x)的图象如图,f(x)=6lnx+h(x).
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间$({1,m+\frac{1}{2}})$上是单调函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=2sin(ωx+φ)的部分图象如图所示,其中A,B两点之间的距离为5,那么下列说法正确的是(  )
A.函数f(x)的最小正周期为8
B.f(3)=-$\frac{1}{2}$
C.x=$\frac{3}{2}$是函数f(x)的一条对称轴
D.函数f(x)向右平移一个单位长度后所得的函数为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l:mx-y=4,若直线l与直线x-(m+1)y=1垂直,则m的值为-$\frac{1}{2}$; 若直线l被圆C:x2+y2-2y-8=0截得的弦长为4,则m的值为±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知{an}是各项为正数的等比数列,Sn为前n项和,满足$\frac{2}{{a}_{3}}$+$\frac{1}{{a}_{4}}$=$\frac{1}{{a}_{5}}$,a3•S3=$\frac{7}{64}$.
(Ⅰ)求an
(Ⅱ)设数列{an}的前n项积为Tn,求所有的正整数k,使得对任意的n∈N*,不等式Sn+k+$\frac{{T}_{n}}{4}$<1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知斜率为2的直线经过椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的右焦点F1,与椭圆相交于A、B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若不等式2x2+(1-a)y2≥(3+a)xy(x>0,y>0)恒成立.则实数a的最大值为4$\sqrt{3}$-7.

查看答案和解析>>

同步练习册答案