精英家教网 > 高中数学 > 题目详情
如图,设地球半径为R,点A、B在赤道上,O为地心,点C在北纬30°的纬线(为其圆心)上,且点A、C、DO共面,点DO共线.若,则异面直线AB与CD所成角的余弦值为                                           (   )
A.B.
C.D.
A.
分别以OB、OA、OD所在直线为x轴、y轴、z轴建立空间直角坐标系O—xyz,易得A(0,R,0),B(R,0,0),C(0,,D(0,0,R),
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,ABCD,平面平面,四边形是矩形,,点在线段上。
(1)求证:平面
(2)当为何值时,∥平面?写出结论,并加以证明;
(3)当EM为何值时,AMBE?写出结论,并加以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是两个不同的平面,m、n是平面及平面之外的两条不同直线,给出四个论断:①m∥n,②,③m⊥,④n⊥,以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两条直线,为两个平面.下列四个命题中,正确的命题是             (   )
A.若所成的角相等,则B.若,则
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直三棱柱ABB1-DCC1中,∠ABB1=90°,AB=4,BC=2,CC1=1,DC上有一动点P,则ΔAPC1周长的最小值为
A.5+B.5-C.4+D.4-

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ABC的顶点ABC到平面的距离依次为abc,且点A与边BC在平面的两侧,则△ABC的重心G到平面的距离为                 (   )
A. B.C. D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在120°的二面角α-l-β内有一点P,P在平面α、β内的射影A、B分别落在半平面αβ内,且PA=3,PB=4,则P到l的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,用一副直角三角板拼成一直二面角A-BD-C,若其中给定AB=AD=2,∠BCD=90°,∠BDC=60°,
(Ⅰ)求三棱锥A-BCD的体积;
(Ⅱ)求点A到BC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,ABDC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明:B1C1⊥CE;
(2)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
2
6
.求线段AM的长.

查看答案和解析>>

同步练习册答案