【题目】已知:函数f(x)=2lnx﹣ax2+3x,其中a∈R.
(1)若f(1)=2,求函数f(x)的最大值;
(2)若a=﹣1,正实数x1,x2满足f(x1)+f(x2)=0,证明:
.
【答案】(1)f(x)max=2ln2+2(2)证明见解析
【解析】
(1)计算得到
,求导得到函数的单调区间,再计算最大值得到答案.
(2)代入数据得到
,得到
,设
得到函数的最小值得到不等式(x1+x2)2+3(x1+x2)≥2,计算得到答案.
(1)∵f(1)=2,∴﹣a+3=2,∴a=1,∴f(x)=2lnx﹣x2+3x,
∴f'(x)
2x+3
,
由f'(x)>0得,0<x<2,有f'(x)<0得,x>2,
∴f(x)在(0,2)为增函数,在(2,+∞)为减函数,
∴f(x)max=f(2)=2ln2+2;
(2)证明:当a=﹣1,f(x)=2lnx+x2+3x,
∵f(x1)+f(x2)=2lnx1+x12+3x1+2lnx2+x22+3x2=0,
∴(x1+x2)2+3(x1+x2)=2(x1x2﹣lnx1x2),
令h(t)=t﹣lnt,∴h'(t)=1
,
由h'(x)>0得,t>1,由h'(x)<0得,0<t<1,
∴h(x)在(0,1)上为减函数,在(1,+∞)上为增函数,
∴h(x)min=h(1)=1,∴(x1+x2)2+3(x1+x2)≥2,
∴(x1+x2)2+3(x1+x2)﹣2≥0,
解得:
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数).以原点
为极点,以
轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆
的方程为
被圆
截得的弦长为
.
(Ⅰ)求实数
的值;
(Ⅱ)设圆
与直线
交于点
,若点
的坐标为
,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,对任意
,点
都在函数
的图象上.
(1)求
,归纳数列
的通项公式(不必证明).
(2)将数列
依次按
项、
项、
项、
项、
项循环地分为
,![]()
,
,
,各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值.
(3)设
为数列
的前
项积,若不等式
对一切
都成立,其中
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,实数
满足
;
(1)当函数
的定义域为
时,求
的值域;
(2)求函数关系式
,并求函数
的定义域
;
(3)在(2)的结论中,对任意
,都存在
,使得
成立,求实数
的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=2py(p>0),直线l交C于A,B两点,且A,B两点与原点不重合,点M(1,2)为线段AB的中点.
(1)若直线l的斜率为1,求抛物线C的方程;
(2)分别过A,B两点作抛物线C的切线,若两条切线交于点S,证明点S在一条定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为定义在
上的奇函数,当
时,有
,且当
时,
,下列命题正确的是( )
A.
B.函数
在定义域上是周期为
的函数
C.直线
与函数
的图象有
个交点D.函数
的值域为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:
,
,
,
,
四点都在抛物线
上.
(1)若线段
的斜率为
,求线段
中点的纵坐标;
(2)记
,若直线
,
均过定点
,且
,
,
分别为
,
的中点,证明:
,
,
三点共线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com