精英家教网 > 高中数学 > 题目详情
已知命题p:方程
x2
3-t
+
y2
t+1
=1
所表示的曲线为焦点在x轴上的椭圆;命题q:实数a满足不等式t2-(a-1)t-a<0.
(1)若命题p为真,求实数t的取值范围;
(2)若命题p是命题q的充分不必要条件,求实数a的取值范围.
分析:(1)根据焦点在x轴上椭圆的标准方程形式,得3-t>t+1>0,解此不等式组即可得到实数t的取值范围.
(2)命题p是命题q的充分不必要条件,说明(1)中t的范围对应集合是不等式t2-(a-1)t-a<0的解集的子集,由此建立不等关系,可解出实数a的取值范围.
解答:解(1)∵方程
x2
3-t
+
y2
t+1
=1
所表示的曲线为焦点在x轴上的椭圆
3-t>0
t+1>0
3-t>t+1
,解之得:-1<t<1…(6分)
(2)∵命题q:实数满足不等式t2-(a-1)t-a<0,即(t+1)(t-a)<0.
∴命题q为真命题,当a>-1时,得到t∈(-1,a);当a<-1时,命题q为真命题得到t∈(a,-1)
∵命题P是命题q的充分不必要条件
∴集合{t|-1<t<1}是不等式t2-(a-1)t-a<0解集的真子集…(9分)
由此可得a>-1且(-1,1)
?
(-1,a)
解之得:a>1…(12分)
点评:本题给出椭圆的焦点在x轴上,求参数t的取值范围并探求一个充分不必要条件,着重考查了椭圆的标准方程和充分必要条件的判断等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:方程x2+mx+1=0有两个不等的负实根;q:方程mx2+(m-1)x+m=0无实根.若“p或q”为真,p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2+mx+1=0有两个不相等的负实数根;命题Q:函数f(x)=lg[4x2+(m-2)x+1]的定义域为实数集R,若P或Q为真,P且Q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:“方程x2+
y2m
=1表示焦点在y轴上的椭圆”;命题Q:“方程2x2-4x+m=0没有实数根”.若P∧Q假,P∨Q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2-2mx+m=0没有实数根;
命题Q:?x∈R,x2+mx+1≥0.
(1)写出命题Q的否定“¬Q”;
(2)如果“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.
(1)若p为真命题,求m的取值范围;
(2)若q为真命题,求m的取值范围;
(3)若“p或q”为真命题,求m的取值范围.

查看答案和解析>>

同步练习册答案