精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是正方形,侧棱底面的中点,求证:

(1)平面

(2)

【答案】(1)证明见解析;(2)证明见解析.

【解析】

(1)连接ACBDO,连接OE,由题意可证得OEPA,利用线面平行的判断定理可得PA∥平面EDB

(2)由线面垂直的定义可得PDAD,且ADCD,据此可知AD⊥平面PCD,故ADPC

(1)连接ACBDO,连接OE

∵底面ABCD是正方形,∴OAC中点,

∵在PAC中,EPC的中点,

OEPA

OE平面EDBPA平面EDB

PA∥平面EDB

(2)∵侧棱PD⊥底面ABCDAD底面ABCD

PDAD

∵底面ABCD是正方形,

ADCD

PDCD=D

AD⊥平面PCD

ADPC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知斜三棱柱的底面是直角三角形,,侧棱与底面成锐角,点在底面上的射影落在边上.

(Ⅰ) 求证:平面

(Ⅱ) 当为何值时,,且的中点?

(Ⅲ) 当,且的中点时,若,四棱锥的体积为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 图像上的点P( ,t )向左平移s(s﹥0) 个单位长度得到点P′.若 P′位于函数y=sin2x的图像上,则( )
A.t= ,s的最小值为
B.t= ,s的最小值为
C.t= ,s的最小值为
D.t= ,s的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小值为

⑴设,求证: 上单调递增;

⑵求证:

⑶求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为 ,A(a,0),B(0,b),O(0,0),△OAB的面积为1.
(1)求椭圆C的方程;
(2)设P的椭圆C上一点,直线PA与Y轴交于点M,直线PB与x轴交于点N。求证:lANl lBMl为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(1)设a=2,b= .
①求方程f(x)=2的根;
②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;
(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥底面ABCDADABABDCADDCAP2AB1,点E为棱PC的中点.

(1)证明:BEDC

(2)求直线BE与平面PBD所成角的正弦值;

(3)F为棱PC上一点,满足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的单调区间;
(2)若f(x)存在极值点x0 , 且f(x1)=f(x0),其中x1≠x0 , 求证:x1+2x0=0;
(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)

8

8.2

8.4

8.6

8.8

9

销量y(件)

90

84

83

80

75

68

(1)求回归直线方程=bx+a;(其中);

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

同步练习册答案